Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires
The optical properties of high-quality V-groove GaAs/AlxGa1-xAs quantum wires have been investigated using low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) techniques. We systematically study the evolution of PL and PLE spectra as a function of the wire size. This comparison allows us to analyze the modification of one-dimensional subbands with decreasing win thickness. We clarify the influence of surface corrugation and localization effects on PL and PLE spectra and we observe large polarization anisotropy unambiguously related to the one-dimensional character of our quantum wires. The results of a polarization analysis of the excitonic transitions are combined with a calculation of the electronic band structure to identify the nature of the transitions and the impact of two-dimensional quantum confinement on valence-band mixing. The observed large polarization anisotropy is directly compared to the effects predicted by a four-band k . p model calculation of the valence-band structure. The set of experimental results combined with our model calculations is consistent with a strong suppression of band-edge absorption in these one-dimensional structures. [S0163-1829(98)08319-2].
1998
57
19
12378
12387
Ecole Polytech Fed Lausanne, Dept Phys, CH-1015 Lausanne, Switzerland. Vouilloz, F, Ecole Polytech Fed Lausanne, Dept Phys, CH-1015 Lausanne, Switzerland.
ISI Document Delivery No.: ZP518
Cited Reference Count: 55
Cited References:
AKIYAMA H, 1996, PHYS REV B, V53, P4229
BASTARD G, 1988, WAVE MECH APPL SEMIC
BAUER GEW, 1988, PHYS REV B, V38, P6015
BAUER GEW, 1991, PHYS REV B, V44, P5562
BAUER GEW, 1992, SURF SCI, V267, P442
BIASIOL G, 1996, APPL PHYS LETT, V69, P2710
BIROTHEAU L, 1992, APPL PHYS LETT, V61, P3023
BLOCH J, 1994, EUROPHYS LETT, V28, P501
BOCKELMANN U, 1991, EUROPHYS LETT, V15, P215
BOCKELMANN U, 1991, EUROPHYS LETT, V16, P601
BRUNNER K, 1994, APPL PHYS LETT, V64, P3320
CHEN AC, 1993, APPL PHYS LETT, V62, P1359
CHRISTEN J, 1992, SURF SCI, V267, P257
CINGOLANI R, 1992, PHYS REV LETT, V69, P1276
CITRIN DS, 1991, PHYS REV B, V43, P11703
FOUQUET JE, 1986, IEEE J QUANTUM ELECT, V22, P1799
GAMMON D, 1995, APPL PHYS LETT, V67, P2391
GAMMON D, 1996, PHYS REV LETT, V76, P3005
GERSHONI D, 1990, PHYS REV LETT, V65, P1631
GOLDONI G, 1996, APPL PHYS LETT, V69, P2965
GURIOLI M, 1994, PHYS REV B, V50, P11817
GUSTAFSSON A, 1995, APPL PHYS LETT, V67, P3673
HAACKE S, 1996, SOLID STATE ELECTRON, V40, P299
ILS P, 1995, PHYS REV B, V51, P4272
JAHN U, 1996, PHYS REV B, V54, P2733
JASKOLSKI W, 1995, P 4 INT C OPT EXC CO, V17
JASKOLSKI W, 1996, PHYS REP, V271, P1
KAJIKAWA Y, 1993, PHYS REV B, V47, P3649
KAPON E, 1989, PHYS REV LETT, V63, P430
KAPON E, 1992, APPL PHYS LETT, V60, P477
KASH K, 1990, SURF SCI, V229, P245
KIENER C, 1996, APPL PHYS LETT, V68, P2061
KOHL M, 1988, PHYS REV B, V37, P10927
KOHL M, 1989, PHYS REV LETT, V63, P2124
KOHL M, 1990, PHYS REV B, V42, P2941
LAGE H, 1991, PHYS REV B, V44, P6500
LAMPEL G, 1968, PHYS REV LETT, V20, P491
LUTTINGER JM, 1955, PHYS REV, V97, P869
LUTTINGER JM, 1956, PHYS REV, V102, P1030
MCINTYRE CR, 1992, PHYS REV B, V45, P9443
MILLER RC, 1985, J LUMIN, V30, P520
MILLER RC, 1988, J APPL PHYS, V64, P3647
MOLENKAMP LW, 1988, PHYS REV B, V38, P4314
OBERLI DY, 1995, NUOVO CIMENTO D, V17, P1641
OGAWA T, 1991, PHYS REV B, V44, P8138
RIBEIRO E, 1995, PHYS REV B, V51, P7890
RINALDI R, 1994, PHYS REV B, V50, P11795
ROSSI F, 1996, PHYS REV B, V53, P16462
ROSSI F, 1996, PHYS REV LETT, V76, P3642
SAMUELSON L, 1995, PHYS STATUS SOLIDI A, V152, P269
SERCEL PC, 1991, PHYS REV B, V44, P5681
TWARDOWSKI A, 1987, PHYS REV B, V35, P8144
VOUILLOZ F, 1997, PHYS REV LETT, V78, P1580
WEISBUCH C, 1981, SOLID STATE COMMUN, V37, P219
WINKLER R, 1995, PHYS REV B, V51, P14395
REVIEWED
EPFL