Infoscience

Journal article

Electron relaxation by LO phonons in quantum wires: An adiabatic approach

The electron states of weakly-one-dimensional quantum wires are computed using the adiabatic approximation in the framework of the k . p theory and the envelope-function approximation. The computed transition rates of electrons from one confined state to any other, mediated by the longitudinal optical (LO) phonons, are clearly ordered with respect to the quantum numbers of the states provided by the adiabatic approximation. The average single electron relaxation time from an excited level is shown to either increase or surprisingly decrease as a function of initial energy. Finally, the relaxation dynamics of an excited population of electrons is analyzed. We show that a fast phenomenological intrasubband thermalization, simultaneous to the LO phonon-mediated relaxation, lowers the final average energy and may in some cases significantly speed up the whole relaxation.

    Keywords: SCATTERING RATES ; INTERSUBBAND RELAXATION ; STIMULATED-EMISSION ; ACOUSTIC PHONONS ; OPTICAL PHONONS ; HETEROSTRUCTURES ; THERMALIZATION ; WELLS ; TRANSPORT ; CARRIERS

    Note:

    Swiss fed inst technol,dept phys,inst micro & optoelect,ch-1015 lausanne,switzerland. tech univ munich,walter schottky inst,d-85748 garching,germany. Amman, C, UNIV LAUSANNE,INST THEORET PHYS,CH-1015 LAUSANNE,SWITZERLAND.

    ISI Document Delivery No.: WF124

    Times Cited: 14

    Cited Reference Count: 48

    Cited References:

    AKIYAMA H, 1994, PHYS REV LETT, V72, P924

    BASTARD G, 1990, WAVE MECH APPL SEMIC

    BASTARD G, 1991, SOLID STATE PHYS, V44, P229

    BENNETT CR, 1995, J PHYS-CONDENS MAT, V7, P9819

    BOCKELMANN U, 1990, PHYS REV B, V42, P8947

    BRIGGS S, 1988, PHYS REV B, V38, P8163

    BRIGGS S, 1989, PHYS REV B, V40, P12001

    BRIGGS S, 1991, PHYS REV B, V43, P4785

    CAMPOS VB, 1992, PHYS REV B, V45, P3898

    CAMPOS VB, 1992, PHYS REV B, V46, P3849

    CINGOLANI R, 1991, PHYS REV LETT, V67, P891

    FERREIRA R, 1989, PHYS REV B, V40, P1074

    FOREMAN BA, 1995, PHYS REV B, V52, P12260

    GRUNDMANN M, 1994, SEMICOND SCI TECH S, V9, P1939

    HAACKE S, 1996, SOLID STATE ELECTRON, V40, P299

    HARTIG M, UNPUB

    JIANG W, 1993, J APPL PHYS, V74, P1652

    JIANG W, 1993, J APPL PHYS, V74, P2097

    JOVANOVIC D, 1993, PHYS REV B, V42, P11108

    KAPON E, 1989, PHYS REV LETT, V63, P430

    KIENER C, 1996, PHYS REV B, V53, R4225

    KIM KW, 1991, J APPL PHYS, V70, P319

    KNIPP PA, 1992, PHYS REV B, V45, P9091

    KNIPP PA, 1995, PHYS REV B, V52, P5923

    LEBURTON JP, 1984, J APPL PHYS, V56, P2850

    LEBURTON JP, 1992, PHYS REV B, V45, P11022

    LEBURTON JP, 1993, J APPL PHYS, V74, P1417

    MACIEL AC, 1995, APPL PHYS LETT, V66, P3039

    MICKEVICIUS R, 1995, J APPL PHYS, V77, P5095

    OBERLI DY, 1995, IL NUOVO CIMENTO D, V17, P1641

    REN SF, 1991, PHYS REV B, V43, P11857

    RIDDOCH FA, 1984, SURF SCI, V142, P260

    ROSSI F, 1993, PHYS REV B, V47, P1695

    ROTA L, 1993, PHYS REV B, V47, P1632

    ROTA L, 1994, EUROPHYS LETT, V28, P277

    ROTA L, 1995, PHYS REV B, V52, P5183

    SAKAKI H, 1980, JPN J APPL PHYS, V19, L735

    SAKAKI H, 1992, SURF SCI, V267, P623

    SENNA JR, 1993, PHYS REV B, V48, P4552

    STROSCIO MA, 1989, PHYS REV B, V40, P6428

    STROSCIO MA, 1991, PHYS REV B, V42, P1488

    TATHAM MC, 1989, PHYS REV LETT, V63, P1637

    TURNER K, 1995, APPL PHYS LETT, V66, P3188

    VURGAFTMAN I, 1993, APPL PHYS LETT, V62, P2251

    VURGAFTMAN I, 1994, PHYS REV B, V50, P14309

    YAMADA T, 1989, PHYS REV B, V40, P6265

    YU SG, 1995, PHYS REV B, V51, P4695

    ZHU BF, 1991, PHYS REV B, V44, P1926

    Reference

    Record created on 2007-08-31, modified on 2016-08-08

Fulltext

Related material