Infoscience

Journal article

Quantum Many-Body States of Excitons in a Small Quantum-Dot

Quantum many-body states of up to four excitons are studied in small parallelepipedal quantum dots with only two nondegenerate electronic levels in the conduction and in the valence bands. Only one type of hole is considered. We find the set of good quantum numbers (including spin variables for the electrons and holes) which block-diagonalizes the Coulomb and the optical dipole interactions. This provides a convenient labeling scheme for the excited states which allows us to diagonalize nearly entirely analytically the 256 x 256 Hamiltonian. The magnitude of the Coulomb level shifts and of the oscillator strength of the optical transitions are shown for a typical case.

    Keywords: SMALL SEMICONDUCTOR CRYSTALLITES ; ELECTRON-HOLE-PAIR ; OPTICAL-PROPERTIES ; BIEXCITON BINDING ; CONFINEMENT ; BOXES ; MICROCRYSTALLITES ; NONLINEARITY ; POTENTIALS ; DEPENDENCE

    Note:

    Swiss fed inst technol, phb ecublens, inst micro & optoelectr, dept phys, ch-1015 lausanne, switzerland.

    ISI Document Delivery No.: RM154

    Times Cited: 49

    Cited Reference Count: 56

    Cited References:

    ARAKAWA Y, 1986, IEEE J QUANTUM ELECT, V22, P1887

    BANYAI L, 1988, PHYS REV B, V38, P8142

    BANYAI L, 1989, PHYS REV B, V39, P8022

    BANYAI L, 1992, PHYS REV B, V45, P14136

    BANYAI L, 1993, SEMICONDUCTOR QUANTU

    BASTARD G, 1988, WAVE MECHANICS APPLI

    BEAUMONT SP, 1990, NATO ADV STUDY I B, V214

    BROIDO DA, 1992, PHYS REV B, V45, P11395

    BRUS LE, 1983, J CHEM PHYS, V79, P5566

    BRUS LE, 1984, J CHEM PHYS, V80, P4403

    BRYANT GW, 1988, PHYS REV B, V37, P8763

    BRYANT GW, 1990, PHYS REV B, V41, P1243

    BRYANT GW, 1993, PHYS REV B, V47, P1683

    CHEMLA DS, 1993, PHYS TODAY, V46, P22

    EAVES L, 1992, NATURE, V357, P540

    EINEVOLL GT, 1992, PHYS REV B, V45, P3410

    FERTIG HA, 1992, SURF SCI, V263, P442

    FETTER AL, 1971, QUANTUM THEORY MANY, P505

    FORNEY JJ, 1974, NUOVO CIMENTO B, V22, P153

    GULDNER Y, 1991, NATO ADV STUDY I B, V253, P97

    HANAMURA E, 1988, PHYS REV B, V37, P1273

    HENNEBERGER F, 1993, OPTICS SEMICONDUCTOR

    HU YZ, 1990, PHYS REV B, V42, P1713

    JOHNSON NF, 1995, J PHYS-CONDENS MAT, V7, P965

    KANG KI, 1992, PHYS REV B, V45, P3465

    KASTNER MA, 1992, REV MOD PHYS, V64, P849

    KASTNER MA, 1993, PHYS TODAY, V46, P24

    KAYANUMA Y, 1992, SOLID STATE COMMUN, V84, P771

    KIRK WP, 1992, NONOSTRUCTURES MESOS

    KOCH SW, 1992, J CRYST GROWTH, V117, P592

    KOMORI K, 1991, IEEE PHOTONIC TECH L, V3, P39

    LEGOFF S, 1993, PHYS REV B, V47, P1383

    LOWDIN PO, 1951, J CHEM PHYS, V19, P1396

    PAN JL, 1992, PHYS REV B, V46, P4009

    PEAKER AR, 1991, NATO ADV STUDY I B, V281

    POKUTNII SI, 1991, SOV PHYS SEMICOND, V25, P381

    POLLOCK EL, 1991, J CHEM PHYS, V94, P6776

    POLLOCK EL, 1992, J CHEM PHYS, V96, P674

    QUE WM, 1992, PHYS REV B, V45, P11036

    QUE WM, 1992, SOLID STATE COMMUN, V81, P721

    RAMANIAH LM, 1993, PHYS REV B, V47, P7132

    REED MA, 1993, SCI AM, V268, P98

    ROMESTAIN R, 1994, PHYS REV B, V49, P1774

    SAKAKI H, 1992, SURF SCI, V267, P623

    SUEMUNE I, 1988, IEEE J QUANTUM ELECT, V24, P1778

    TAKAGAHARA T, 1987, PHYS REV B, V36, P9293

    TAKAGAHARA T, 1989, PHYS REV B, V39, P10206

    TAKAGAHARA T, 1992, PHYS REV B, V46, P15578

    TAKAGAHARA T, 1993, PHYS REV B, V47, P4569

    TANAKA T, 1993, APPL PHYS LETT, V62, P756

    THOAI DBT, 1990, PHYS REV B, V42, P11261

    VANHOUTEN H, 1992, SURF SCI, V263, P60

    WEISBUCH C, 1991, NATO ADV STUDY I B, V281, P165

    WEISBUCH C, 1991, NATO ADV STUDY I B, V281, P309

    WEISBUCH C, 1991, QUANTUM SEMICONDUCTO

    WEISSBLUTH M, 1978, ATOMS MOL, P476

    Reference

    Record created on 2007-08-31, modified on 2016-08-08

Fulltext

Related material