GaAlAs/GaAs and GaInAs/InP thick layers, single and multiple quantum wells were grown by atmospheric pressure metalorganic vapor phase epitaxy. Auger electron spectroscopy, wedge transmission electron microscopy, x-ray diffraction, low-temperature photoluminescence, and scanning electron microscopy were used to analyze the crystal quality. These analysis techniques show that layers grown using high vapor pressure metalorganic sources present fluctuations in the ternary alloy composition. We propose that these fluctuations are due to the pulse character of the high vapor pressure metalorganic flow. Bubbling experiments were performed to show the relationship between ternary layer composition fluctuation and the pulse character of the metalorganic flow. High vapor pressure metalorganic source like trimethylgallium presents tens of Angstroms growth rate per pulse or bubble whereas a low vapor pressure source like triethylgallium presents few Angstroms growth rate per bubble.