Infoscience

Journal article

Growth and Characterization of Gaalas Gaas and Gainas Inp Structures - the Effect of a Pulse Metalorganic Flow

GaAlAs/GaAs and GaInAs/InP thick layers, single and multiple quantum wells were grown by atmospheric pressure metalorganic vapor phase epitaxy. Auger electron spectroscopy, wedge transmission electron microscopy, x-ray diffraction, low-temperature photoluminescence, and scanning electron microscopy were used to analyze the crystal quality. These analysis techniques show that layers grown using high vapor pressure metalorganic sources present fluctuations in the ternary alloy composition. We propose that these fluctuations are due to the pulse character of the high vapor pressure metalorganic flow. Bubbling experiments were performed to show the relationship between ternary layer composition fluctuation and the pulse character of the metalorganic flow. High vapor pressure metalorganic source like trimethylgallium presents tens of Angstroms growth rate per pulse or bubble whereas a low vapor pressure source like triethylgallium presents few Angstroms growth rate per bubble.

    Keywords: MOLECULAR-BEAM EPITAXY ; CHEMICAL VAPOR-DEPOSITION ; QUANTUM-WELL ; STRUCTURES ; ELECTRON-MICROSCOPY ; MOVPE GROWTH ; HETEROSTRUCTURES ; PRESSURE ; PHOTOLUMINESCENCE ; SUPERLATTICES ; QUALITY

    Note:

    Unicamp,inst fis,br-13081 campinas,sp,brazil. ecole polytech fed lausanne,dept phys,ch-1015 lausanne,switzerland. ctr natl etud telecommun,f-92220 bagneux,france. Sacilotti, m, cpqd telebras,caixa postal 1579,br-13083 campinas,sp,brazil.

    ISI Document Delivery No.: GX655

    Times Cited: 8

    Cited Reference Count: 40

    Cited References:

    1986, ALFA VENTRON CATALOG

    BERTOLET DC, 1987, J APPL PHYS, V62, P120

    BOEGLIN H, 1990, MICROELECTRONIC MANU, V13, P23

    CHANG CY, 1981, J CRYST GROWTH, V55, P24

    CHEN YJ, 1987, P SPIE, V792, P162

    CHOW R, 1983, APPL PHYS LETT, V42, P383

    CUNNINGHAM JE, 1988, APPL PHYS LETT, V53, P1285

    DEVEAUD B, 1986, J APPL PHYS, V59, P1633

    ENGLISH JH, 1987, APPL PHYS LETT, V50, P1826

    ESAKI L, 1986, IEEE J QUANTUM ELECT, V22, P1611

    FAIST J, 1989, J APPL PHYS, V66, P1023

    FRIJLINK PM, 1988, J CRYST GROWTH, V93, P207

    FUKUI T, 1988, JPN J APPL PHYS 2, V27, L1320

    GAINES JM, 1988, J VAC SCI TECHNOL B, V6, P1378

    GANIERE JD, 1989, J MICROSC SPECTROSC, V14, P407

    HERSEE SD, 1990, J VAC SCI TECHNOL A, V8, P800

    KAWAGUCHI Y, 1986, I PHYS C SER, V79, P79

    KAWAI H, 1984, J APPL PHYS, V56, P463

    KUECH TF, 1986, J CRYST GROWTH, V77, P257

    LAUBE G, 1988, J CRYST GROWTH, V93, P45

    LEYS MR, 1984, J CRYST GROWTH, V68, P431

    MIRCEA A, 1986, J CRYST GROWTH, V77, P340

    MOSS RH, 1984, J CRYST GROWTH, V68, P78

    NICHOLAS DJ, 1987, I PHYS C SER, V91, P295

    OGALE SB, 1987, PHYS REV B, V36, P1662

    RAZEGHI M, 1983, J ELECTRON MATER, V12, P371

    RAZEGHI M, 1989, APPL PHYS LETT, V55, P1677

    SACILOTTI M, 1989, REV BRAS FIS, V4, P189

    SASAKI H, 1985, JPN J APPL PHYS, V24, L417

    SCHAUS CF, 1986, J APPL PHYS, V59, P678

    SHAYEGAN M, 1988, APPL PHYS LETT, V52, P1086

    SILLMON RS, 1986, J CRYST GROWTH, V77, P73

    SMEETS ETJ, 1986, J CRYST GROWTH, V77, P347

    TANAKA M, 1986, SURF SCI, V174, P65

    TANAKA M, 1987, J CRYST GROWTH, V81, P153

    THRUSH EJ, 1984, J CRYST GROWTH, V68, P412

    TSANG WT, 1986, APPL PHYS LETT, V49, P960

    TSUI RK, 1986, APPL PHYS LETT, V48, P940

    TU CW, 1987, J CRYST GROWTH, V81, P159

    WELCH DF, 1985, APPL PHYS LETT, V46, P991

    Reference

    Record created on 2007-08-31, modified on 2016-08-08

Fulltext

Related material