Infoscience

Journal article

Influence of Al Content in the Barrier on the Optical-Properties of Gaas/Alxga1-Xas(X=0.1-1) Multiple-Quantum-Well Structures

GaAs/AlxGa1-xAs multiple-quantum-well structures with identical well thicknesses (almost-equal-to 119 angstrom) but with different Al contents x in the barrier (x almost-equal-to 0. 1, 0.2, 0.45, and 1) were grown by molecular-beam epitaxy. We report the characterization of the structures by a combination of different techniques. The x-ray-diffraction technique allows us to estimate the Al content x and to measure the period of the structure with good accuracy. Using the photographs given by high-resolution transmission electron microscopy on cleaved wedges, we investigate directly the key parameters of the structures, such as the regularity, the layer thickness, and the Al content x. The photoluminescence measurements carried out in detail from 4 K to room temperature show the excitonic character of the radiative recombination in these structures up to room temperature. The influence of x on the photoluminescence is investigated systematically. The data confirm the theoretical results calculated using finite barrier heights. The increase of transition energies with increasing x is due to the increase of confinement energies and exciton binding energies. A good agreement of the structure parameter values obtained by the above techniques is given.

    Keywords: EXCITON BINDING-ENERGY ; MOLECULAR-BEAM EPITAXY ; GAAS ; PHOTOLUMINESCENCE ; ALXGA1-XAS ; LUMINESCENCE ; GROWTH ; HETEROINTERFACES ; SUPERLATTICES ; REFLECTIVITY

    Note:

    Ky, nh, swiss fed inst technol,inst micro & optoelectr,ch-1015 lausanne,switzerland.

    ISI Document Delivery No.: JN826

    Times Cited: 14

    Cited Reference Count: 37

    Cited References:

    ADACHI S, 1985, J APPL PHYS, V58, R1

    ALTARELLI M, 1988, EXCITONS CONFINED SY, P181

    ANDREANI LC, 1990, PHYS REV B, V42, P8928

    BASTARD G, 1988, WAVE MECHANICS APPL, P93

    BAUMBACH GT, 1992, SEMICOND SCI TECH, V7, P304

    BOSIO C, 1988, PHYS REV B, V38, P3263

    BUFFAT PA, 1990, EVALUATION ADV SEMIC, P319

    CHANG YC, 1988, EXCITIONS CONFINED S, P189

    CHEMLA DS, 1984, IEEE J QUANTUM ELECT, V20, P265

    CHEN Y, 1988, NUOVO CIMENTO D, V10, P847

    CHUU DS, 1991, PHYS REV B, V43, P14504

    CINGOLANI R, 1988, EUROPHYS LETT, V6, P169

    COLOCCI M, 1990, J APPL PHYS, V68, P2809

    DAWSON P, 1983, PHYS REV B, V28, P7381

    DEVEAUD B, 1984, APPL PHYS LETT, V45, P1078

    FAIST J, 1989, J APPL PHYS, V66, P1023

    FOUQUET JE, 1985, APPL PHYS LETT, V46, P280

    FUJIWARA K, 1988, APPL PHYS LETT, V253, P675

    GOORSKY MS, 1991, APPL PHYS LETT, V59, P2269

    GREENE RL, 1984, PHYS REV B, V29, P1807

    HERMAN MA, 1991, J APPL PHYS, V70, R1

    ISHIBASHI T, 1981, JPN J APPL PHYS, V20, L623

    KAKIBAYASHI H, 1985, JPN J APPL PHYS, V24, L905

    LEE J, 1986, PHYS REV B, V33, P5512

    MAAN JC, 1984, PHYS REV B, V30, P2253

    MILLER RC, 1985, J LUMIN, V30, P520

    NELSON DF, 1987, PHYS REV B, V36, P8063

    OKAMOTO H, 1987, JPN J APPL PHYS 1, V26, P315

    OSSART P, 1991, JPN J APPL PHYS PT 2, V30, L783

    OUGAZZADEN A, 1991, J CRYST GROWTH, V107, P761

    PAVESI L, 1990, PROPERTIES GALLIUM A, P529

    REYNOLDS DC, 1986, PHYS REV B, V33, P5931

    ROGERS DC, 1986, PHYS REV B, V34, P4002

    SINGH J, 1985, J VAC SCI TECHNOL B, V3, P520

    TANAKA M, 1986, JPN J APPL PHYS PT 2, V25, L155

    TANNER BK, 1991, APPL PHYS LETT, V59, P2272

    XU ZY, 1987, SOLID STATE COMMUN, V61, P707

    Reference

    Record created on 2007-08-31, modified on 2016-08-08

Fulltext

Related material