Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Deformation of pores in viscoplastic soil material
 
research article

Deformation of pores in viscoplastic soil material

Berli, M.
•
Or, D.  
2006
International Journal for Numerical and Analytical Methods in Geomechanics

Changes in soil pore volume and shape in response to internal and external mechanical stresses alter key soil hydrologic and transport properties. The extent of these changes is dependent on details of pore shape and size evolution. We present a model for quantifying rates of deformation and shape evolution of idealized spheroidal pores as functions of macroscopic stresses and soil rheological properties. Previous solutions for shrinkage of spherical pores embedded in a viscoplastic matrix under isotropic stress were extended to spheroidal pore shapes and biaxial stresses using Eshelby's classical theory. Bulk soil behavior was obtained from upscaling of detailed single pore deformation. Results show that pore closure rates increase with decreasing initial aspect ratio (i.e., oblate pores close faster than spherical pores), and with higher deviatoric stress. Incomplete pore closure is attributed to soil hardening due to pore shape accommodation under biaxial stresses. The model provides a means for approximating pore deformation as input to predictive models for soil hydraulic properties.

  • Details
  • Metrics
Type
research article
DOI
10.1061/(ASCE)1532-3641(2006)6:2(108)
Author(s)
Berli, M.
Or, D.  
Date Issued

2006

Published in
International Journal for Numerical and Analytical Methods in Geomechanics
Volume

6

Issue

2

Start page

108

End page

118

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LASEP  
Available on Infoscience
August 24, 2007
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/10735
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés