Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls
 
research article

Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls

Quarteroni, Alfio  
•
Veneziani, Alessandro
•
Zunino, Paolo  
2001
SIAM Journal on Numerical Analysis

The numerical modeling of solutes absorption processes by the arterial wall is of paramount interest for the understanding of the relationships between the local features of blood flow, the nourishing of the inner arterial wall by the blood solutes, and the pathologies that can appear when this process is for some reason perturbed. In the present work, two models for the solutes dynamics are investigated. In the first model, which is essentially based on the one introduced by Rappitsch and Perktold (1996) and Rappitsch, Perktold, and Pernkopf (1997), the Navier-Stokes equations for an incompressible fluid, describing the blood velocity and pressure fields, are coupled with an advection-diffusion equation for the solute concentration. The wellposedness of this model is discussed. The second model considers also the solutes dynamics "inside" the arterial wall, described by a pure diffusion equation. Actually, this is a heterogeneous model, coupling different equations in different parts of the domain at hand. Its wellposedness is proven. Moreover, in view of the numerical study, an iterative finite element method by subdomains is proposed and its convergence properties are analyzed. Finally, several numerical results comparing the different models in situations of physiologic interest are illustrated

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SNA001488.pdf

Access type

openaccess

Size

1.44 MB

Format

Adobe PDF

Checksum (MD5)

b77a7a1e5358801d6e114aaf822e6f06

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés