Action Filename Description Size Access License Resource Version
Show more files...


Robot programming by demonstration (RPD) covers methods by which a robot learns new skills through human guidance. We present an interactive, multimodal RPD framework using active teaching methods that places the human teacher in the robot's learning loop. Two experiments are presented in which observational learning is first used to demonstrate a manipulation skill to a HOAP-3 humanoid robot by using motion sensors attached to the teacher's body. Then, putting the robot through the motion, the teacher incrementally refines the robot's skill by moving its arms manually, providing the appropriate scaffolds to reproduce the action. An incremental teaching scenario is proposed based on insights from various fields addressing developmental, psychological, and social issues related to teaching mechanisms in humans. Based on this analysis, different benchmarks are suggested to evaluate the setup further.