Résumé

We have built a model organic field-effect transistor that is basically composed of a single layer of pentacene crystal in interaction with an oxide surface. Drain and source contacts are ohmic so that the pentacene layer can carry a current density as high as 3000 A cm-2 at a gate voltage of -60 V. Four-probe and two-probe transport measurements as a function of temperature and fields are presented in relation with structural near-field observations. The experimental results suggest a simple two-dimensional model where the equilibrium between free and trapped carriers at the oxide interface determines the OFET characteristics and performance

Détails

Actions