000102050 001__ 102050 000102050 005__ 20181203020754.0 000102050 0247_ $$2doi$$a10.1103/PhysRevLett.91.028701 000102050 02470 $$2DAR$$a3911 000102050 02470 $$2ISI$$a000184086000051 000102050 037__ $$aARTICLE 000102050 245__ $$aDoes a single zealot affect an infinite group of voters? 000102050 269__ $$a2003 000102050 260__ $$bAPS$$c2003 000102050 336__ $$aJournal Articles 000102050 490__ $$aPhys. Rev. Lett. (USA) 000102050 500__ $$aCopyright 2003, IEE 000102050 500__ $$a7697548 000102050 500__ $$a0031-9007 000102050 500__ $$azealot 000102050 500__ $$avoters 000102050 500__ $$ainhomogeneous stochastic many-body systems 000102050 500__ $$amagnetization 000102050 500__ $$aunanimity state 000102050 520__ $$aA method for studying the exact properties of a class of inhomogeneous stochastic many-body systems is developed and presented in the framework of a voter model perturbed by the presence of a "zealot," an individual allowed to favor an "opinion." We compute exactly the magnetization of this model and find that in one (1D) and two dimensions (2D) it evolves, algebraically (~t<sup>-1/2</sup>) in 1D and much slower (~1/lnt) in 2D, towards the unanimity state chosen by the zealot. In higher dimensions the stationary magnetization is no longer uniform: the zealot cannot influence all the individuals. The implications to other physical problems are also pointed out 000102050 6531_ $$alattice theory 000102050 6531_ $$amagnetisation 000102050 6531_ $$aN-body problems 000102050 6531_ $$aspin systems 000102050 6531_ $$astatistical mechanics 000102050 6531_ $$astochastic systems 000102050 700__ $$aMobilia, M. 000102050 773__ $$dAPS$$j91$$k2$$q028701$$tPhysical Review Letters 000102050 909C0 $$0252073$$pLOMM$$xU10338 000102050 909CO $$ooai:infoscience.tind.io:102050$$particle 000102050 937__ $$aLOMM-ARTICLE-2003-004 000102050 970__ $$a15/LOMM 000102050 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED 000102050 980__ $$aARTICLE