000102050 001__ 102050
000102050 005__ 20180317092250.0
000102050 0247_ $$2doi$$a10.1103/PhysRevLett.91.028701
000102050 02470 $$2DAR$$a3911
000102050 02470 $$2ISI$$a000184086000051
000102050 037__ $$aARTICLE
000102050 245__ $$aDoes a single zealot affect an infinite group of voters?
000102050 269__ $$a2003
000102050 260__ $$bAPS$$c2003
000102050 336__ $$aJournal Articles
000102050 490__ $$aPhys. Rev. Lett. (USA)
000102050 500__ $$aCopyright 2003, IEE
000102050 500__ $$a7697548
000102050 500__ $$a0031-9007
000102050 500__ $$azealot
000102050 500__ $$avoters
000102050 500__ $$ainhomogeneous stochastic many-body systems
000102050 500__ $$amagnetization
000102050 500__ $$aunanimity state
000102050 520__ $$aA method for studying the exact properties of a class of inhomogeneous stochastic many-body systems is developed and presented in the framework of a voter model perturbed by the presence of a "zealot," an individual allowed to favor an "opinion." We compute exactly the magnetization of this model and find that in one (1D) and two dimensions (2D) it evolves, algebraically (~t<sup>-1/2</sup>) in 1D and much slower (~1/lnt) in 2D, towards the unanimity state chosen by the zealot. In higher dimensions the stationary magnetization is no longer uniform: the zealot cannot influence all the individuals. The implications to other physical problems are also pointed out
000102050 6531_ $$alattice theory
000102050 6531_ $$amagnetisation
000102050 6531_ $$aN-body problems
000102050 6531_ $$aspin systems
000102050 6531_ $$astatistical mechanics
000102050 6531_ $$astochastic systems
000102050 700__ $$aMobilia, M.
000102050 773__ $$dAPS$$j91$$k2$$q028701$$tPhysical Review Letters
000102050 909CO $$ooai:infoscience.tind.io:102050$$particle
000102050 909C0 $$0252073$$pLOMM$$xU10338
000102050 937__ $$aLOMM-ARTICLE-2003-004
000102050 970__ $$a15/LOMM
000102050 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000102050 980__ $$aARTICLE