Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia
 
research article

Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia

Rinsch, C.
•
Quinodoz, P.
•
Pittet, B.
Show more
2001
Gene Therapy

Stimulating angiogenesis by gene transfer approaches offers the hope of treating tissue ischemia which is untreatable by currently practiced techniques of vessel grafting and bypass surgery. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) are potent angiogenic molecules, making them ideal candidates for novel gene transfer protocols designed to promote new blood vessel growth. In this study, an ex vivo gene therapy approach utilizing cell encapsulation was employed to deliver VEGF and FGF-2 in a continuous and localized manner. C(2)C(12) myoblasts were genetically engineered to secrete VEGF(121), VEGF(165) and FGF-2. These cell lines were encapsulated in hollow microporous polymer membranes for transplantation in vivo. Therapeutic efficacy was evaluated in a model of acute skin flap ischemia. Capsules were positioned under the distal, ischemic region of the flap. Control flaps showed 50% necrosis at 1 week. Capsules releasing either form of VEGF had no effect on flap survival, but induced a modest increase in distal vascular supply. Delivery of FGF-2 significantly improved flap survival, reducing necrosis to 34.2% (P < 0.001). Flap vascularization was significantly increased by FGF-2 (P < 0.01), with numerous vessels, many of which had a large lumen diameter, growing in the proximity of the implanted capsules. These results demonstrate that FGF-2, delivered from encapsulated cells, is more efficacious than either VEGF(121) or VEGF(165) in treating acute skin ischemia and improving skin flap survival. Furthermore, these data attest to the applicability of cell encapsulation for the delivery of angiogenic factors for the treatment and prevention of tissue ischemia.

  • Details
  • Metrics
Type
research article
DOI
10.1038/sj.gt.3301436
Author(s)
Rinsch, C.
Quinodoz, P.
Pittet, B.
Alizadeh, N.
Baetens, D.
Montandon, D.
Aebischer, P.  
Pepper, M. S.
Date Issued

2001

Published in
Gene Therapy
Volume

8

Issue

7

Start page

523

End page

33

Subjects

Acute Disease

•

Animals

•

Cattle

•

Cell Line

•

Cell Transplantation

•

Endothelial Growth Factors/genetics/metabolism

•

Female

•

Fibroblast Growth Factor 2/ genetics/metabolism

•

Gene Therapy/ methods

•

Graft Survival

•

Humans

•

Ischemia/pathology/ therapy

•

Lymphokines/genetics/metabolism

•

Mice

•

Mice

•

Inbred C3H

•

Muscle

•

Skeletal/cytology/transplantation

•

Neovascularization

•

Pathologic/therapy

•

Rats

•

Rats

•

Wistar

•

Skin Transplantation

•

Surgical Flaps/ blood supply

•

Transfection

•

Vascular Endothelial Growth Factor A

•

Vascular Endothelial Growth Factors

Note

Division of Surgical Research and Gene Therapy Center, Lausanne University Medical School, CHUV, Lausanne, Switzerland.

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LEN  
Available on Infoscience
March 9, 2007
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/3737
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés