Selectivity of montmorillonite catalyzed prebiotic reactions of D, L-nucleotides

The montmorillonite-catalyzed reactions of the 5′-phosphorimidazolides of D, L-adenosine (D, L-ImpA) (Figure 1a. N = A, R = H) and D, L-uridine (Figure 1a., N = U, R = H) yields oligomers that were as long as 7 mers and 6 mers, respectively. The reactions of dilute solutions of D-ImpA and D-ImpU under the same conditions gave oligomers as long as 9 and 8 mers respectively. This demonstrated that oligomer formation is only partially inhibited by incorporation of both the D- and L-enantiomers. The structures of the dimers, trimers and tetramer fractions formed from D, L-ImpA was investigated by selective enzymatic hydrolysis, comparison with authentic samples and mass spectrometry. Homochiral products were present in greater amounts than would be expected if theoretical amounts of each were formed. The ratio of the proportion of homochiral products to that of the amount of each expected for the dimers (cyclic and linear), trimers and tetramers, was 1.3, 1.6, and 2.1, respectively. In the D, L-ImpU reaction homochiral products did not predominate with ratios of dimers (cyclic and linear), trimers and tetramers 0.8, 0.44, and 1.4, respectively. The proportions of cyclic dimers in the dimer fraction were 52–66% with D, L-ImpA and 44–69% with D, L-ImpU. No cyclic dimers were formed in the absence of montmorillonite. The differences in the reaction products of D, L-ImpA and D, L-ImpU are likely to be due to the difference in the orientations of the activated monomers when bound to the catalytic sites on montmorillonite. The consequences of the selectivity of montmorillonite as a prebiotic catalyst are discussed.

Published in:
Origins of Life and Evolution of Biospheres, 37, 1, 3-26
Other identifiers:

 Record created 2007-03-07, last modified 2018-01-27

Rate this document:

Rate this document:
(Not yet reviewed)