Photon recycling as the dominant process of luminescence generation in an electron beam excited n-InP epilayer grown on an n(+)-InP substrate

We examine the room-temperature dispersive and non-dispersive cathodoluminescent (CL) signals produced by an n-InP/n(+)-InP homojunction as a function of excitation beam energy. The non-intentionally doped epilayer of the homojunction is thick enough (2.5 mu m) that it can be investigated independently of the substrate by choosing beam energies lower than 25 keV. The red-shift of CL peak, as well as the drastic change of the shape of the CL spectra, observed when increasing the beam energy, are explained in terms of photon recycling. The luminescence of the epilayer is found to be governed by the recycling of photons originating from the substrate. This leads to an increase of the external luminescence efficiency of the epilayer compared with that expected in homojunctions with undoped substrates. We also present a determination of the diffusion-recombination parameters of the structure.


Published in:
Semiconductor Science and Technology, 11, 5, 726-734
Year:
1996
ISSN:
0268-1242
Keywords:
Note:
Ecole polytech,dept genie phys,grp rech phys & technol couches minces,montreal,pq h3c 3a7,canada. ecole polytech fed lausanne,dept phys,imo,ch-1015 lausanne,switzerland. Cleton, F, UNIV SCI & TECHNOL LILLE,LAB STRUCT & PROPRIETES ETAT SOLIDE,CNRS,URA 234,BATIMENT C6,F-59655 VILLENEUVE DASCQ,FRANCE.
ISI Document Delivery No.: UJ838
Times Cited: 4
Cited Reference Count: 44
Cited References:
AHRENKIEL RK, 1988, J APPL PHYS, V64, P1916
AHRENKIEL RK, 1991, SOL CELLS, V30, P163
AHRENKIEL RK, 1992, J VAC SCI TECHNOL A, V10, P990
AKAMATSU B, 1981, J APPL PHYS, V52, P7245
AKAMATSU B, 1989, J MICROSC SPECTROSC, V14, A12
ASBECK P, 1977, J APPL PHYS, V48, P820
AUGUSTINE G, 1993, P 5 INT C IND PHOSPH, P636
BADESCU V, 1993, SEMICOND SCI TECH, V8, P1267
BEBB HB, 1972, SEMICONDUCT SEMIMET, V8, P181
BENSAID B, 1989, J APPL PHYS, V66, P5542
BOTHRA S, 1991, SOLID STATE ELECTRON, V34, P47
BUGAJSKI M, 1985, J APPL PHYS, V57, P521
CASEY HC, 1976, J APPL PHYS, V74, P5748
CASEY HC, 1977, APPL PHYS LETT, V30, P247
CLETON F, 1996, I PHYS C SER, V146, P745
DEMEERSCHMAN C, 1992, MICROSC MICROANAL M, V3, P486
DUMKE WP, 1957, PHYS REV, V105, P139
ERMAN M, 1986, IEEE J LIGHTWAVE TEC, V4, P1524
ETTENBERG M, 1977, APPL PHYS LETT, V30, P207
EVERHART TE, 1971, J APPL PHYS, V42, P5837
FOSSAERT N, 1995, UNPUB
GRUEN AE, 1957, Z NATURFORSCH A, V12, P89
HERGERT W, 1987, PHYS STATUS SOLIDI A, V101, P611
HWANG CJ, 1972, PHYS REV B, V6, P1355
KAMIYA T, 1979, J LUMIN, V18, P910
KANAYA K, 1972, J PHYS D, V5, P43
KIM TS, 1991, PROPERTIES INDIUM PH, P165
KOCH F, 1987, PHYS STATUS SOLIDI A, V104, P931
KURIYAMA T, 1977, JPN J APPL PHYS, V16, P465
LANDSBERG PT, 1957, P PHYS SOC B, V70, P1175
LASHER G, 1964, PHYS REV, V133, A553
LESTER SD, 1988, APPL PHYS LETT, V52, P474
LUSH GB, 1992, J APPL PHYS, V72, P1436
MOSS S, 1957, P PHYS SOC B, V70, P247
NICHOLAS DJ, 1991, PROPERTIES INDIUM PH, P198
PARROTT JE, 1993, SOL ENERG MAT SOL C, V30, P221
RENAUD P, 1992, J APPL PHYS, V71, P1907
ROSENWAKS Y, 1993, J PHYS CHEM-US, V97, P10421
SIEGEL W, 1991, PROPERTIES INDIUM PH, P85
STRAUSS U, 1994, J APPL PHYS, V75, P85204
VARSHNI YP, 1967, PHYS STATUS SOLIDI, V19, P459
VONROOS O, 1983, J APPL PHYS, V54, P1390
YACOBI BGH, 1990, CATHODOLUMINESCENCE, P68
ZHOLUDEV VM, 1982, SOV PHYS SEMICOND, V16, P696
Laboratories:




 Record created 2007-02-15, last modified 2018-03-18


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)