Infoscience

Journal article

Photon recycling as the dominant process of luminescence generation in an electron beam excited n-InP epilayer grown on an n(+)-InP substrate

We examine the room-temperature dispersive and non-dispersive cathodoluminescent (CL) signals produced by an n-InP/n(+)-InP homojunction as a function of excitation beam energy. The non-intentionally doped epilayer of the homojunction is thick enough (2.5 mu m) that it can be investigated independently of the substrate by choosing beam energies lower than 25 keV. The red-shift of CL peak, as well as the drastic change of the shape of the CL spectra, observed when increasing the beam energy, are explained in terms of photon recycling. The luminescence of the epilayer is found to be governed by the recycling of photons originating from the substrate. This leads to an increase of the external luminescence efficiency of the epilayer compared with that expected in homojunctions with undoped substrates. We also present a determination of the diffusion-recombination parameters of the structure.

    Keywords: MINORITY-CARRIER LIFETIME ; SURFACE RECOMBINATION VELOCITY ; BAND-GAP ; SEMICONDUCTORS ; RADIATIVE RECOMBINATION ; QUANTUM EFFICIENCY ; SELF-ABSORPTION ; GAAS ; PHOTOLUMINESCENCE ; HETEROSTRUCTURES ; PENETRATION

    Note:

    Ecole polytech,dept genie phys,grp rech phys & technol couches minces,montreal,pq h3c 3a7,canada. ecole polytech fed lausanne,dept phys,imo,ch-1015 lausanne,switzerland. Cleton, F, UNIV SCI & TECHNOL LILLE,LAB STRUCT & PROPRIETES ETAT SOLIDE,CNRS,URA 234,BATIMENT C6,F-59655 VILLENEUVE DASCQ,FRANCE.

    ISI Document Delivery No.: UJ838

    Times Cited: 4

    Cited Reference Count: 44

    Cited References:

    AHRENKIEL RK, 1988, J APPL PHYS, V64, P1916

    AHRENKIEL RK, 1991, SOL CELLS, V30, P163

    AHRENKIEL RK, 1992, J VAC SCI TECHNOL A, V10, P990

    AKAMATSU B, 1981, J APPL PHYS, V52, P7245

    AKAMATSU B, 1989, J MICROSC SPECTROSC, V14, A12

    ASBECK P, 1977, J APPL PHYS, V48, P820

    AUGUSTINE G, 1993, P 5 INT C IND PHOSPH, P636

    BADESCU V, 1993, SEMICOND SCI TECH, V8, P1267

    BEBB HB, 1972, SEMICONDUCT SEMIMET, V8, P181

    BENSAID B, 1989, J APPL PHYS, V66, P5542

    BOTHRA S, 1991, SOLID STATE ELECTRON, V34, P47

    BUGAJSKI M, 1985, J APPL PHYS, V57, P521

    CASEY HC, 1976, J APPL PHYS, V74, P5748

    CASEY HC, 1977, APPL PHYS LETT, V30, P247

    CLETON F, 1996, I PHYS C SER, V146, P745

    DEMEERSCHMAN C, 1992, MICROSC MICROANAL M, V3, P486

    DUMKE WP, 1957, PHYS REV, V105, P139

    ERMAN M, 1986, IEEE J LIGHTWAVE TEC, V4, P1524

    ETTENBERG M, 1977, APPL PHYS LETT, V30, P207

    EVERHART TE, 1971, J APPL PHYS, V42, P5837

    FOSSAERT N, 1995, UNPUB

    GRUEN AE, 1957, Z NATURFORSCH A, V12, P89

    HERGERT W, 1987, PHYS STATUS SOLIDI A, V101, P611

    HWANG CJ, 1972, PHYS REV B, V6, P1355

    KAMIYA T, 1979, J LUMIN, V18, P910

    KANAYA K, 1972, J PHYS D, V5, P43

    KIM TS, 1991, PROPERTIES INDIUM PH, P165

    KOCH F, 1987, PHYS STATUS SOLIDI A, V104, P931

    KURIYAMA T, 1977, JPN J APPL PHYS, V16, P465

    LANDSBERG PT, 1957, P PHYS SOC B, V70, P1175

    LASHER G, 1964, PHYS REV, V133, A553

    LESTER SD, 1988, APPL PHYS LETT, V52, P474

    LUSH GB, 1992, J APPL PHYS, V72, P1436

    MOSS S, 1957, P PHYS SOC B, V70, P247

    NICHOLAS DJ, 1991, PROPERTIES INDIUM PH, P198

    PARROTT JE, 1993, SOL ENERG MAT SOL C, V30, P221

    RENAUD P, 1992, J APPL PHYS, V71, P1907

    ROSENWAKS Y, 1993, J PHYS CHEM-US, V97, P10421

    SIEGEL W, 1991, PROPERTIES INDIUM PH, P85

    STRAUSS U, 1994, J APPL PHYS, V75, P85204

    VARSHNI YP, 1967, PHYS STATUS SOLIDI, V19, P459

    VONROOS O, 1983, J APPL PHYS, V54, P1390

    YACOBI BGH, 1990, CATHODOLUMINESCENCE, P68

    ZHOLUDEV VM, 1982, SOV PHYS SEMICOND, V16, P696

    Reference

    Record created on 2007-02-15, modified on 2016-08-08

Fulltext

  • There is no available fulltext. Please contact the lab or the authors.

Related material