Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vaerlose, Denmark
This study investigates the influence of petroleum hydrocarbons on a microbial community in the vadose zone under field conditions. An artificial hydrocarbon mixture consisting of volatile and semi-volatile compounds similar to jet-fuel was emplaced in a previously uncontaminated vadose zone in nutrient-poor glacial melt water sand. The experiment included monitoring of microbial parameters and CO2 concentrations in soil gas over 3 months in and outside the hydrocarbon vapor plume that formed around the buried petroleum. Microbial and chemical analyses of soil and vadose zone samples were performed on samples from cores drilled to 3.3 m depth on three dates and three lateral distances from the buried petroleum mass. Significantly elevated CO2 concentrations were observed after contamination. Total cell numbers as determined by fluorescence microscopy were strongly correlated with soil organic carbon and nitrogen content but varied little with contamination. Redundancy analysis (RDA) allowed direct analysis of effects of selected environmental variables or the artificial contamination on microbiological parameters. Variation in biomass and CO2 production was explained by soil parameters, to 46%, and by the duration of contamination, to 39.8%. The microbial community structure was assessed by community level physiological profiles (CLPP) analysis using Biolog(TM) Eco-Plates. In the CLPP data only 35.9% of the variation could be linked to soil parameters and contamination, however, the samples with greatest exposure to hydrocarbons grouped together on RDA plots. It is concluded that, at this nutrient-poor site, the microbial community was dominated by natural heterogeneity and that the influence of petroleum hydrocarbon vapors was weak. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
48-3-387.pdf
Publisher's version
openaccess
475.48 KB
Adobe PDF
53c432cc8e00f2e60dd2c0e3088346cb