Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Data mining methodologies for supporting engineers during system identification
 
doctoral thesis

Data mining methodologies for supporting engineers during system identification

Saitta, Sandro  
2008

Data alone are worth almost nothing. While data collection is increasing exponentially worldwide, a clear distinction between retrieving data and obtaining knowledge has to be made. Data are retrieved while measuring phenomena or gathering facts. Knowledge refers to data patterns and trends that are useful for decision making. Data interpretation creates a challenge that is particularly present in system identification, where thousands of models may explain a given set of measurements. Manually interpreting such data is not reliable. One solution is to use data mining. This thesis thus proposes an integration of techniques from data mining, a field of research where the aim is to find knowledge from data, into an existing multiple-model system identification methodology. It is shown that, within a framework for decision support, data mining techniques constitute a valuable tool for engineers performing system identification. For example, clustering techniques group similar models together in order to guide subsequent decisions since they might indicate possible states of a structure. A main issue concerns the number of clusters, which, usually, is unknown. For determining the correct number of clusters in data and estimating the quality of a clustering algorithm, a score function is proposed. The score function is a reliable index for estimating the number of clusters in a given data set, thus increasing understanding of results. Furthermore, useful information for engineers who perform system identification is achieved through the use of feature selection techniques. They allow selection of relevant parameters that explain candidate models. The core algorithm is a feature selection strategy based on global search. In addition to providing information about the candidate model space, data mining is found to be a valuable tool for supporting decisions related to subsequent sensor placement. When integrated into a methodology for iterative sensor placement, clustering is found to provide useful support through providing a rational basis for decisions related to subsequent sensor placement on existing structures. Greedy and global search strategies should be selected according to the context. Experiments show that whereas global search is more efficient for initial sensor placement, a greedy strategy is more suitable for iterative sensor placement.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH4056.pdf

Access type

openaccess

Size

4.13 MB

Format

Adobe PDF

Checksum (MD5)

ed23fde45545dbf0cc39909334f223cb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés