Electronic fibres via the thermal drawing of liquid-metal-embedded elastomers
Soft electronic fibres are potential building blocks for a variety of emerging technologies including smart textiles and wearable health monitors. However, it remains a challenge to fabricate fibres that combine conductive and dielectric domains in complex architectures in a simple and scalable way. Here we show that a thermal drawing approach can be used to fabricate stretchable fibre-based sensors from liquid-metal-embedded elastomers. The material formulation and processing parameters can be controlled to create high aspect-ratio stretchable fibres that integrate high-conductivity (around 103 S cm−1) and high-dielectric (κ≈13.5) domains across the fibre cross-section. We illustrate the versatility of our approach by creating an all-liquid-metal-based capacitive fibre sensor, which offers a gauge factor of 0.96, stretchability of 925% and high stability to cyclic deformation. We also integrate our fibre-based sensor into textiles and demonstrate an efficient smart knee brace.
2-s2.0-105019928443
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
École Polytechnique Fédérale de Lausanne
2025
REVIEWED
EPFL