Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Memory sharing predictor: the key to a speculative coherent DSM
 
conference paper

Memory sharing predictor: the key to a speculative coherent DSM

Lai, An-Chow
•
Falsafi, Babak  
1999
Proceedings of the International Symposium on Computer Architecture

Recent research advocates using general message predictors to learn and predict the coherence activity in distributed shared memory (DSM). By accurately predicting a message and timely invoking the necessary coherence actions, a DSM can hide much of the remote access latency. This paper proposes the Memory Sharing Predictors (MSPs), pattern-based predictors that significantly improve prediction accuracy and implementation cost over general message predictors. An MSP is based on the key observation that to hide the remote access latency, a predictor must accurately predict only the remote memory accesses (i.e., request messages) and not the subsequent coherence messages invoked by an access. Simulation results indicate that MSPs improve prediction accuracy over general message predictors from 81% to 93% while requiring less storage overhead. This paper also presents the first design and evaluation for a speculative coherent DSM using pattern- based predictors. We identify simple techniques and mechanisms to trigger prediction timely and perform speculation for remote read accesses. Our speculation hardware readily works with a conventional full-map write- invalidate coherence protocol without any modifications. Simulation results indicate that performing speculative read requests alone reduces execution times by 12% in our shared-memory applications

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

isca99_msp.pdf

Access type

openaccess

Size

177.84 KB

Format

Adobe PDF

Checksum (MD5)

493561c6d7d664eb92ab4c20bdbc9fc7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés