Unifying frequency metrology across microwave, optical, and free-electron domains
Frequency metrology lies at the heart of precision measurement. Optical frequency combs provide a coherent link uniting the microwave and optical domains in the electromagnetic spectrum, with profound implications in timekeeping, sensing and spectroscopy, fundamental physics tests, exoplanet searches, and light detection and ranging. Here, we extend this frequency link to free electrons by coherent modulation of the electron phase by a continuous-wave laser locked to a fully stabilized optical frequency comb. Microwave frequency standards are transferred to the optical domain via the frequency comb, and are further imprinted in the electron spectrum by optically modulating the electron phase with a photonic chip-based microresonator. As a proof-of-concept demonstration, we apply this frequency link in the calibration of an electron spectrometer and verify its precision by measuring the absolute optical frequency. This approach achieves a 20-fold improvement in the accuracy of electron spectroscopy, relevant for investigating low-energy excitations in quantum materials, two-dimensional materials, nanophotonics, and quantum optics. Our work bridges frequency domains differed by a factor of ~ 1013 and carried by different physical objects, establishes a spectroscopic connection between electromagnetic waves and free-electron matter waves, and has direct ramifications in ultrahigh-precision electron spectroscopy.
10.1038_s41467-025-62808-5.pdf
Main Document
Published version
openaccess
CC BY
1.35 MB
Adobe PDF
c81ea136da581edc3112c8f8fc2e24aa