Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Statistical modelling of ground temperature in mountain permafrost
 
research article

Statistical modelling of ground temperature in mountain permafrost

Blanchet, J.  
•
Davison, A. C.  
2012
Proceedings Of The Royal Society A-Mathematical Physical And Engineering Sciences

Permafrost consists of soil and rocks that remain at 0 degrees C or below for at least two consecutive years. In mountains, permafrost ground ice acts like cement, stabilizing rock walls. Its degradation, following climate warming, may lead to slope instability in high mountains and damage to infrastructure, so knowledge about its evolution is essential for risk analysis. In pure solids, heat is transferred by conduction, but permafrost ground is also subject to non-conductive fluxes, and heat transfers are influenced by factors such as air temperature and snow cover, so a deterministic scheme cannot fully describe heat propagation. Current approaches to modelling use numerical models involving heat conduction schemes and energy balance models, requiring data on quantities such as relative humidity and radiation. We describe a stochastic treatment of the heat equation, which adapts to space-time changes in heat transfers driven by factors such as air temperature and snow cover, without requiring corresponding data, as part of a statistical model. The flexibility and performance of our approach are illustrated using data from two boreholes in the Swiss Alps, which show the strong influence of snow cover on ground temperature and the long-term degradation of permafrost produced by the 2003 heat wave.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences 2012 Blanchet-1.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1.49 MB

Format

Adobe PDF

Checksum (MD5)

e6eaba61a50ccd5cb1dbcd71b9dcf88b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés