Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Morphological Diversity Strongly Constrains Synaptic Connectivity and Plasticity
 
research article

Morphological Diversity Strongly Constrains Synaptic Connectivity and Plasticity

Reimann, Michael W.
•
Horlemann, Anna-Lena
•
Ramaswamy, Srikanth
Show more
2017
Cerebral Cortex

Synaptic connectivity between neurons is naturally constrained by the anatomical overlap of neuronal arbors, the space on the axon available for synapses, and by physiological mechanisms that form synapses at a subset of potential synapse locations. What is not known is how these constraints impact emergent connectivity in a circuit with diverse morphologies. We investigated the role of morphological diversity within and across neuronal types on emergent connectivity in a model of neocortical microcircuitry. We found that the average overlap between the dendritic and axonal arbors of different types of neurons determines neuron-type specific patterns of distance-dependent connectivity, severely constraining the space of possible connectomes. However, higher order connectivity motifs depend on the diverse branching patterns of individual arbors of neurons belonging to the same type. Morphological diversity across neuronal types, therefore, imposes a specific structure on first order connectivity, and morphological diversity within neuronal types imposes a higher order structure of connectivity. We estimate that the morphological constraints resulting from diversity within and across neuron types together lead to a 10-fold reduction of the entropy of possible connectivity configurations, revealing an upper bound on the space explored by structural plasticity.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

bhx150.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.07 MB

Format

Adobe PDF

Checksum (MD5)

0e49185b2dec3d9b3dd9c5656c05d7c1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés