Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Exact Expressions for Lightning Electromagnetic Fields: Application to the Rusck Field-To-Transmission Line Coupling Model
 
research article

Exact Expressions for Lightning Electromagnetic Fields: Application to the Rusck Field-To-Transmission Line Coupling Model

Cooray, Vernon
•
Cooray, Gerald
•
Rubinstein, Marcos
Show more
February 9, 2023
Atmosphere

An exact analytical expression for the electric field of the return stroke as excited by a propagating step current source is derived in this paper. This expression could be advantageously used to evaluate the disturbances caused by lightning on overhead lines. There are three equivalent procedures to evaluate the voltages induced by lightning on power lines, namely, the Agrawal–Price–Gurbaxani model, the Taylor–Satterwhite–Harrison model, and the Rachidi model. In the case of a vertical return stroke channel, the coupling model developed by Rusck becomes identical to these three coupling models. Due to its simplicity, the Rusck model is frequently used by engineers to study the effects of lightning on power distribution and transmission lines. In order to reduce the time involved in the electromagnetic field calculation, the Rusck model is incorporated with an analytical expression for the electromagnetic fields of the return stroke excited by a propagating step current pulse. Our research work shows that the Rusck expression can be used to calculate the peak values of lightning induced voltages to an accuracy of about 10%. However, the use of this analytical expression to calculate the time derivatives of lightning induced voltages may result in errors as large as 50%. The derived expression in this paper can be used to correct for this inaccuracy. We also provide an exact expression for the electric field at any given point in space when the propagating current is an impulse function. This expression can be combined with the convolution integral to obtain the electric field corresponding to waveforms similar to measured return stroke currents.

  • Details
  • Metrics
Type
research article
DOI
10.3390/atmos14020350
Author(s)
Cooray, Vernon
Cooray, Gerald
Rubinstein, Marcos
Rachidi-Haeri, Farhad  
Date Issued

2023-02-09

Published in
Atmosphere
Volume

14

Issue

2

Start page

350

Subjects

lightning

•

return stroke

•

transmission lines

•

distribution lines

•

induced voltages

•

electromagnetic coupling models

•

Rusck model

•

accelerating charges

•

electromagnetic fields

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
SCI-STI-FR  
Available on Infoscience
February 12, 2023
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/194731
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés