Techno-economic analysis of ammonia to hydrogen and power pathways considering the emerging hydrogen purification and fuel cell technologies
Ammonia serves as a promising hydrogen carrier and energy storage medium due to its high hydrogen content, ease of transport, and well-established production infrastructure. This study presents a comprehensive techno-economic analysis of ammonia-to‑hydrogen (A2H) and ammonia-to-power (A2P) pathways, comparing various process configurations for hydrogen production and power generation. High-temperature ammonia crackers (600 °C) achieve a maximum energy efficiency of 87.55 % and a maximum exergy efficiency of 86.09 %, outperforming lower-temperature crackers (450 °C), which have energy efficiencies ranging from 82.16 % to 86.75 %. Among hydrogen separation technologies, temperature swing adsorption (TSA) incurs the lowest efficiency penalty but at the highest cost, while pressure swing adsorption (PSA) is more energy-intensive but has the lowest levelized cost of hydrogen (LCOH) at 2.81 USD/kg. In the A2P pathway, the integrated system of the high-temperature cracker and solid oxide fuel cell (SOFC) achieves the highest efficiency of 69.55 % and the lowest levelized cost of electricity (LCOE) at 0.145 USD/kWh, underscoring the crucial role of system efficiency in determining LCOE. Conversely, directly combusting hydrogen in a steam Rankine cycle (SRC) results in the lowest efficiency of 33.2 % and the highest LCOE of 0.715 USD/kWh, making it the least viable option. Furthermore, integrating ammonia with existing energy infrastructures creates new opportunities for hydrogen production and power generation. The results highlight ammonia's potential as a cost-effective hydrogen carrier, particularly in renewable-rich regions for large-scale ammonia synthesis and export to high energy cost markets. This study offers insights into optimal strategies for deploying ammonia-based energy solutions, informing future technological developments and policy frameworks for a hydrogen-driven future economy.
10.1016_j.apenergy.2025.125871.pdf
Main Document
http://purl.org/coar/version/c_970fb48d4fbd8a85
openaccess
CC BY
1.71 MB
Adobe PDF
017ec14f53250b74c1b7c6fabccd4c2a