Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stability Verification of Neural Network Controllers using Mixed-Integer Programming
 
research article

Stability Verification of Neural Network Controllers using Mixed-Integer Programming

Schwan, Roland  
•
Jones, Colin N.  
•
Kuhn, Daniel  
2023
IEEE Transactions on Automatic Control

We propose a framework for the stability verification of Mixed-Integer Linear Programming (MILP) representable control policies. This framework compares a fixed candidate policy, which admits an efficient parameterization and can be evaluated at a low computational cost, against a fixed baseline policy, which is known to be stable but expensive to evaluate. We provide sufficient conditions for the closed-loop stability of the candidate policy in terms of the worst-case approximation error with respect to the baseline policy, and we show that these conditions can be checked by solving a Mixed-Integer Quadratic Program (MIQP). Additionally, we demonstrate that an outer approximation of the stability region of the candidate policy can be computed by solving an MILP. The proposed framework is sufficiently general to accommodate a broad range of candidate policies including ReLU Neural Networks (NNs), optimal solution maps of parametric quadratic programs, and Model Predictive Control (MPC) policies. We also present an open-source toolbox in Python based on the proposed framework, which allows for the easy verification of custom NN architectures and MPC formulations. We showcase the flexibility and reliability of our framework in the context of a DC-DC power convertor case study and investigate the computational complexity.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Stability_Verification_of_Neural_Network_Controllers_using_Mixed_Integer_Programming.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

License Condition

copyright

Size

1.58 MB

Format

Adobe PDF

Checksum (MD5)

8a372ad75178a81ad804d2ee9bb2e314

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés