Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Photoactivation of silicon rhodamines via a light-induced protonation
 
research article

Photoactivation of silicon rhodamines via a light-induced protonation

Frei, Michelle Susanne  
•
Hoess, Philipp
•
Lampe, Marko
Show more
October 8, 2019
Nature Communications

Photoactivatable fluorophores are important for single-particle tracking and super-resolution microscopy. Here we present a photoactivatable fluorophore that forms a bright silicon rhodamine derivative through a light-dependent protonation. In contrast to other photoactivatable fluorophores, no caging groups are required, nor are there any undesired side-products released. Using this photoactivatable fluorophore, we create probes for HaloTag and actin for live-cell single-molecule localization microscopy and single-particle tracking experiments. The unusual mechanism of photoactivation and the fluorophore's outstanding spectroscopic properties make it a powerful tool for live-cell super-resolution microscopy.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Final_Version.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

4.11 MB

Format

Adobe PDF

Checksum (MD5)

9e83d1ba957d0681e69643ae636be515

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés