Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Numerical Approach to Determine the Resistance of Threaded Anchors in Ultra-High-Performance Fiber-Reinforced Cementitious Composite
 
research article

Numerical Approach to Determine the Resistance of Threaded Anchors in Ultra-High-Performance Fiber-Reinforced Cementitious Composite

Hochuli, Antonina  
•
Bruhwiler, Eugen  
November 18, 2024
Buildings

Due to their relatively high tensile strength and dense matrix, UHPFRCs have proven to be a highly effective building material for both strengthening existing reinforced concrete structures and constructing new ones. In both cases, the use of fasteners is prevailing, with threaded anchors being frequently employed. The thicknesses of structural components made of UHPFRCs are relatively thin, i.e., at least 30 mm, typically 50 to 100 mm, and exceptionally 100 to 200 mm. Therefore, the aim is to use fasteners with short anchorage lengths. In this study, the structural behavior of a short threaded anchor with a 20 mm diameter and an embedment length of 50 mm (2.5 & Oslash;) in a UHPFRC is investigated using non-linear finite element models. The UHPFRC is assumed to exhibit tensile strain-hardening behavior, with tensile strengths of 7 MPa and 11 MPa, respectively. The modeled anchor was subjected to a continuously increasing uniaxial pull-out force. The results indicate that the fracture mechanism of threaded anchors in UHPFRCs is primarily characterized by the formation of a tensile membrane within the UHPFRC, which acts as the main resisting element against the pull-out force. Additionally, the influence of the UHPFRC's tensile properties on the pull-out behavior and ultimate resistance of the threaded anchors was determined.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.3390_buildings14113669.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

9.75 MB

Format

Adobe PDF

Checksum (MD5)

b76cb982c30d079d0130ef6a12bdb3cd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés