Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. LTP Modeling and Analysis of Frequency Coupling in PLL-Synchronized Converters for Harmonic Power Flow Studies
 
research article

LTP Modeling and Analysis of Frequency Coupling in PLL-Synchronized Converters for Harmonic Power Flow Studies

Cecati, Federico
•
Becker, Johanna Kristin Maria  
•
Pugliese, Sante
Show more
December 13, 2022
IEEE Transactions on Smart Grid

As known, nonlinear loads in power systems originate harmonic distortion and power quality issues. Converter-interfaced loads exhibit a nonlinear behaviour as well and may largely contribute to increase the harmonic pollution. The nonlinearities introduced by the PLL-synchronization and power control originate, indeed, a coupling mechanism between fundamental and harmonic frequencies. These harmonic coupling effects are not captured by traditional Norton/Thevenin equivalent converter models, leading to inaccurate harmonic power flow analyses. This paper proposes a Linear Time Periodic model of a PLL-synchronized converter to be used in Harmonic Power Flow analyses. A realistic 18-bus distribution grid hosting substantial amount of power-electronic interfaced resources is used as a case study. It is revealed that, in high grid loadability condition and with distorted grid supply voltage, the harmonics are significantly amplified by the converters and the fundamental components of the buses voltages are reduced, representing a risk for the voltage stability. This phenomenon is also influenced by the tuning of the current control loop and the PLL. The accuracy of the presented analyses is validated by comparing the harmonic power flow results with time-domain simulations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

HPF_PLL_paper_FINAL.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

n/a

Size

6.04 MB

Format

Adobe PDF

Checksum (MD5)

ba658957d6c41525d961c25fb85c3602

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés