Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Closing the pressure gap in x-ray photoelectron spectroscopy by membrane hydrogenation
 
research article

Closing the pressure gap in x-ray photoelectron spectroscopy by membrane hydrogenation

Delmelle, Renaud
•
Probst, Benjamin
•
Alberto, Roger
Show more
2015
Review Of Scientific Instruments

Comprehensive studies of gas-solid reactions require the in-situ interaction of the gas at a pressure beyond the operating pressure of ultrahigh vacuum (UHV) X-ray photoelectron spectroscopy (XPS). The recent progress of near ambient pressure XPS allows to dose gases to the sample up to a pressure of 20 mbar. The present work describes an alternative to this experimental challenge, with a focus on H-2 as the interacting gas. Instead of exposing the sample under investigation to gaseous hydrogen, the sample is in contact with a hydrogen permeation membrane, through which hydrogen is transported from the outside to the sample as atomic hydrogen. Thereby, we can reach local hydrogen concentrations at the sample inside an UHV chamber, which is equipped with surface science tools, and this corresponds to a hydrogen pressure up to 1 bar without affecting the sensitivity or energy resolution of the spectrometer. This experimental approach is validated by two examples, that is, the reduction of a catalyst precursor for CO2 hydrogenation and the hydrogenation of a water reduction catalyst for photocatalytic H-2 production, but it opens the possibility of the new in situ characterisation of energy materials and catalysts. (C) 2015 AIP Publishing LLC.

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.4921353
Web of Science ID

WOS:000355923700005

Author(s)
Delmelle, Renaud
Probst, Benjamin
Alberto, Roger
Zuettel, Andreas  
Bleiner, Davide
Borgschulte, Andreas
Date Issued

2015

Publisher

American Institute of Physics

Published in
Review Of Scientific Instruments
Volume

86

Issue

5

Article Number

053104

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMER  
Available on Infoscience
September 28, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/119427
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés