Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Damping properties of the nucleus pulposus
 
research article

Damping properties of the nucleus pulposus

Vogel, Arne  
•
Pioletti, Dominique  
2012
Clinical Biomechanics -Bristol-

Background: The nucleus pulposus is extremely deformable and it is not uncommon to observe strain amplitudes as large as 12.5% in physiological loading conditions. It has been shown that the nucleus pulposus contributes to the damping properties of the intervertebral disc. The quantification of the damping properties of the nucleus pulposus under physiological large deformations is then a key aspect for its mechanical characterization and for the design of nucleus replacement devices. Methods: A specific mechanical device has been developed to encapsulate nucleus pulposus tissues into a deformable and permeable device, while quantifying its water content. The specific damping capacity was defined by dividing the energy loss by the work input. With this device and definition, the specific damping capacity of the bovine coccygeal nucleus pulposus was quantified in large compressive deformations (12.5%) and for frequencies ranging between 10−2 and 101 Hz. Findings: It is found that the specific damping capacity of the nucleus pulposus of the bovine coccygeal ranged between 18 and 36%. The lowest values of specific damping capacity are found for frequencies corresponding to the dynamics of loads in all day activities such as walking (0.1 to 1 Hz). Interpretation: The nucleus pulposus contributes to dissipate energy under physiological large deformations. However, it seems that the nucleus pulposus is designed so that damping is minimal for frequencies corresponding to moderate daily activities.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CB(Arne).pdf

Access type

openaccess

Size

684.54 KB

Format

Adobe PDF

Checksum (MD5)

48826a34c589da39e974bae66e773c77

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés