Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. The Effect of Wind on the Surface Snow Microstructure – Experimental Insights
 
conference poster not in proceedings

The Effect of Wind on the Surface Snow Microstructure – Experimental Insights

Walter, Benjamin
•
Weigel, Hagen
•
Wahl, Sonja  
Show more
December 6, 2023
AGU23 Annual Meeting: Wide. Open. Science.

Snow precipitation frequently occurs under moderate to strong wind conditions, resulting in drifting and blowing snow. Processes like particle fragmentation and airborne metamorphism during snow transport result in microstructural modifications of the ultimately deposited snow. Despite the relevance (optically and mechanically) of surface snow for alpine and polar environments, the effect of wind on the snow microstructure remains poorly understood and quantified. Available descriptions of snow densification due to wind are exclusively derived from field measurements where conditions are difficult to control. Information on the effect of wind on the specific surface area (SSA) is basically nonexistent. The goal of this study is to systematically quantify the influence of wind on the surface snow density and SSA, and to identify the relevant processes. We conducted experiments in a cold laboratory using a closedcircuit ring wind tunnel (RWT) with an infinite fetch to investigate wind-induced microstructure modifications under controlled atmospheric, flow and snow conditions. Artificially produced dendritic fresh snow was manually poured into the RWT for simulating precipitation during the experiments. Airborne snow particles are characterized by high-speed imaging, and deposited snow is characterized by density and SSA measurements resulting in a comprehensive dataset. We measured an increase of the densification rate with increasing wind speed which significantly differs from previous model parameterizations. The SSA was found to decrease under the influence of wind, while increasing wind velocities intensified the SSA decrease. For higher air temperatures (T > -5°C), both the densification and SSA rates significantly differ from the rather constant rates at lower temperatures. We attribute this to the effects of enhanced cohesion or sintering (density) and intensified airborne snow metamorphism (SSA) at higher air temperatures. A sensitivity experiment revealed a strong influence of airborne snow metamorphism on the SSA decrease. Our results provide a first step towards an improved understanding and modeling of the effect of aeolian snow transport on optically and mechanically relevant microstructural properties of surface snow.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

AGU23_Walter_PosterAbstract.pdf

Type

N/a

Access type

openaccess

License Condition

copyright

Size

36.52 KB

Format

Adobe PDF

Checksum (MD5)

41dcd0d7a59dba638379bb365bf7b18c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés