Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Advanced high-power gyrotrons
 
research article

Advanced high-power gyrotrons

Kuntze, M.
•
Alberti, S.  
•
Dammertz, G.
Show more
2003
Ieee Transactions on Plasma Science

Gyrotrons at high frequency with high-output power are mainly developed for microwave heating and current drive in plasmas for thermonuclear fusion. For the stellarator Wendelstein 7-X, now under construction at IPP Greifswald, Germany, a 10-MW electron-cyclotron-resonance-heating (ECRH) system is foreseen. A 1-MW 140-GHz gyrotron with synthetic diamond window for continuous wave operation and with a single stage depressed collector for energy recovery and improvement of efficiency has been designed, constructed, and tested in collaboration with CRPP Lausanne and TED Velizy. It operates in the TE28,8-cavity mode and provides a linearly polarized TEM0,0 Gaussian RE beam. In short pulse operation at the design current of 40 A, an output power of 1-MW could be achieved for an accelerating voltage of 82 kV without depression voltage, an output power of 1.15 MW at an accelerating voltage of 84 kV with a depression voltage of 25 kV. These values correspond to an efficiency of 49%. After some problems with the RF-load, long-pulse operation was performed. The power measurements were done by the calibrated signal of the diode detector placed at the second mirror. Output powers of 1 MW could be achieved for 10 s, and an energy as high as 90 MJ per pulse has been produced with an output power of 0.64 MW. The pulselengths were mainly determined by the preset values. Only for the 100-s pulse at 0.74 MW, a limitation was found due to a pressure increase beyond about 10(-7) hPa. The ITER task (task for the future international thermonuclear experimental reactor) on development of coaxial cavity gyrotrons ended in 2001. In accordance with the goal of the task, the potential of coaxial gyrotrons has been investigated and, as a result, data necessary for an industrial realization of a 2-MW CW 170-GHz tube have been obtained. In addition, first work on tube integration has been done. The results will be presented and discussed. By biasing the coaxial insert a fast (within 0.1 ms) frequency tuning has been demonstrated. In particular, a fast step tuning between the 165-GHz nominal mode and the azimuthal neighbors at 162.5 and 167.2 GHz have been performed. In addition, at the nominal mode a continuous frequency variation within the bandwidth of up to 70 MHz has been done.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TPS.2003.808885
Web of Science ID

WOS:000182032700005

Author(s)
Kuntze, M.
Alberti, S.  
Dammertz, G.
Giguet, E.
Illy, S.
Heidinger, R.
Koppenburg, K.
LeCloarec, G.
LeGoff, Y.
Leonhardt, W.
Show more
Date Issued

2003

Published in
Ieee Transactions on Plasma Science
Volume

31

Issue

1

Start page

25

End page

31

Subjects

ITER

Note

Part 1

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
SPC  
LPHE  
Available on Infoscience
April 16, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/21960
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés