Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. network-based constraint to evaluate climate sensitivity
 
research article

network-based constraint to evaluate climate sensitivity

Ricard, Lucile  
•
Falasca, Fabrizio
•
Runge, Jakob
Show more
December 1, 2024
Nature Communications

The 2015 Paris agreement was established to limit Greenhouse gas (GHG) global warming below 1.5°C above preindustrial era values. Knowledge of climate sensitivity to GHG levels is central for formulating effective climate policies, yet its exact value is shroud in uncertainty. Climate sensitivity is quantitatively expressed in terms of Equilibrium Climate Sensitivity (ECS) and Transient Climate Response (TCR), estimating global temperature responses after an abrupt or transient doubling of CO2. Here, we represent the complex and highly-dimensional behavior of modelled climate via low-dimensional emergent networks to evaluate Climate Sensitivity (netCS), by first reconstructing meaningful components describing regional subprocesses, and secondly inferring the causal links between these to construct causal networks. We apply this methodology to Sea Surface Temperature (SST) simulations and investigate two different metrics in order to derive weighted estimates that yield likely ranges of ECS (2.35–4.81°C) and TCR (1.53-2.60°C). These ranges are narrower than the unconstrained distributions and consistent with the ranges of the IPCC AR6 estimates. More importantly, netCS demonstrates that SST patterns (at “fast” timescales) are linked to climate sensitivity; SST patterns over the historical period exclude median sensitivity but not low-sensitivity (ECS < 3.0°C) or very high sensitivity (ECS ≥ 4.5°C) models.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41467-024-50813-z.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.45 MB

Format

Adobe PDF

Checksum (MD5)

eec8aa9f5e5cd90d3149f33a98983ad6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés