Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Alpha heating, isotopic mass, and fast ion effects in deuterium-tritium experiments
 
research article

Alpha heating, isotopic mass, and fast ion effects in deuterium-tritium experiments

Budny, R. V.
•
Abduallev, S.
•
Abhangi, M.
Show more
September 1, 2018
Nuclear Fusion

Alpha heating experiments in the Tokamak Fusion Test Reactor (TFTR) and in the Joint European Torus (JET) 1997 DTE1 campaign arc reexamined. In TFTR supershots central electron heating of both deuterium only and deuterium-tritium supershots was dominated by thermal ion-electron heat transfer rate p(ie). The higher T-e in deuterium-tritium supershots was mainly due to higher T-i largely caused by isotopic mass effects of neutral beam-thermal ion heating. The thermal ion-electron heating dominated the electron heating in the center. The ratio of the predicted alpha to total electron heating rates f(alp) is less than 0.30. Thus alpha heating (and possible favorable isotopic mass scaling of the thermal plasma) were too small to be measured reliably. The JET alpha heating Hot-Ion H-mode discharges had lower T-i/T-e, and thus had lower p(ie) and the deuterium-tritium DT discharges had higher f(alp), than in TFTR. There were not enough comparable discharges to verify alpha heating. The high performance phases consisted of rampup to brief flattop durations. At equal times during the rampup phase central T-e and T-i were linearly correlated with the thermal hydrogcnic isotopic mass < A >(hyd) which co-varied with beam ion pressure, the tritium fraction of neutral beam power, and the time delay to the first significant sawteeth which interrupted the T-e increases. For both devices the expected alpha healing rate and the null hypothesis of no alpha heating arc consistent with the measurements within the measurement and modeling uncertainties.

  • Details
  • Metrics
Type
research article
DOI
10.1088/1741-4326/aaca04
Web of Science ID

WOS:000437665200004

Author(s)
Budny, R. V.
Abduallev, S.
Abhangi, M.
Abreu, P.
Afzal, M.
Aggarwal, K. M.
Ahlgren, T.
Ahn, J. H.
Aho-Mantila, L.
Aiba, N.
Show more
Date Issued

2018-09-01

Publisher

IOP Publishing Ltd

Published in
Nuclear Fusion
Volume

58

Issue

9

Article Number

096011

Subjects

Physics, Fluids & Plasmas

•

Physics

•

tokamak experiments with deuterium-tritium

•

alpha heating

•

tftr

•

jet

•

isotopic mass effects

•

fast ion effects

•

mode plasmas

•

confinement

•

dt

•

transport

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
SPC  
Available on Infoscience
September 20, 2019
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/161327
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés