Pharmacological induction of a progenitor state for the efficient expansion of primary human hepatocytes
The liver is an organ with strong regenerative capacity, yet primary hepatocytes have a low amplification potential in vitro, a major limitation for the cell-based therapy of liver disorders and for ex vivo biological screens. Induced pluripotent stem cells (iPSCs) may help to circumvent this obstacle but often harbor genetic and epigenetic abnormalities, limiting their potential. Here, we describe the pharmacological induction of proliferative human hepatic progenitor cells (HPCs) through a cocktail of growth factors and small molecules mimicking the signaling events involved in liver regeneration. Human HPCs from healthy donors and pediatric patients proliferated vigorously while maintaining their genomic stability and could be redifferentiated in vitro into metabolically competent cells that supported the replication of hepatitis B and delta viruses. Redifferentiation efficiency was boosted by three-dimensional culture. Finally, transcriptome analysis showed that HPCs were more closely related to mature hepatocytes than iPSC-derived hepatocyte-like cells were. Conclusion: HPC induction holds promise for a variety of applications such as ex vivo disease modeling, personalized drug testing or metabolic studies, and development of a bioartificial liver.
Unzu et all.pdf
openaccess
CC BY-NC
1.73 MB
Adobe PDF
4fc8f463e4e97afcb184b12f7b16f4c8