Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Fourier uniqueness and interpolation in Euclidean space
 
doctoral thesis

Fourier uniqueness and interpolation in Euclidean space

Stoller, Martin Peter  
2022

We prove that every Schwartz function in Euclidean space can be completely recovered given only its restrictions and the restrictions of its Fourier transform to all origin-centered spheres whose radii are square roots of integers. In particular, the only Schwartz function which, together with its Fourier transform, vanishes on these spheres, is the zero function. We show that this remains true if we replace the spheres by surfaces or discrete sets of points which are sufficiently small perturbations of these spheres. In a complementary, opposite direction, we construct infinite dimensional spaces of Fourier eigenfunctions vanishing on on certain discrete subsets of those spheres. The proofs combine harmonic analysis, the theory of modular forms and algebraic number theory.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH9800.pdf

Type

N/a

Access type

openaccess

License Condition

copyright

Size

1.36 MB

Format

Adobe PDF

Checksum (MD5)

5ac6d7b90d2c7c3fc5b296d5a28bcb71

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés