Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Model simulations of the modulating effect of the snow cover in a rain-on-snow event
 
research article

Model simulations of the modulating effect of the snow cover in a rain-on-snow event

Wever, N.  
•
Jonas, T.
•
Fierz, C.
Show more
2014
Hydrology And Earth System Sciences

In October 2011, the Swiss Alps underwent a marked rain-on-snow (ROS) event when a large snowfall on 8 and 9 October was followed by intense rain on 10 October. This resulted in severe flooding in some parts of Switzerland. Model simulations were carried out for 14 meteorological stations in two affected regions of the Swiss Alps using the detailed physics-based snowpack model SNOWPACK. We also conducted an ensemble sensitivity study, in which repeated simulations for a specific station were done with meteorological forcing and rainfall from other stations. This allowed the quantification of the contribution of rainfall, snow melt and liquid water storage on generating snowpack runoff. In the simulations, the snowpack produced runoff about 4-6 h after rainfall started, and total snowpack runoff became higher than total rainfall after about 11-13 h. These values appeared to be strongly dependent on snow depth, rainfall and melt rates. Deeper snow covers had more storage potential and could absorb all rain and meltwater in the first hours, whereas the snowpack runoff from shallow snow covers reacts much more quickly. However, the simulated snowpack runoff rates exceeded the rainfall intensities in both snow depth classes. In addition to snow melt, the water released due to the reduction of liquid water storage contributed to excess snowpack runoff. This effect appears to be stronger for deeper snow covers and likely results from structural changes to the snowpack due to settling and wet snow metamorphism. These results are specifically valid for the point scale simulations performed in this study and for ROS events on relatively fresh snow.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Wever_Rain_on_Snow_hess-18-4657-2014.pdf

Access type

openaccess

Size

3.44 MB

Format

Adobe PDF

Checksum (MD5)

8a347711c59718d3f1d1ebaba2fcc9d3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés