Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. New class of inhibitors of amyloid-beta fibril formation. Implications for the mechanism of pathogenesis in Alzheimer's disease
 
research article

New class of inhibitors of amyloid-beta fibril formation. Implications for the mechanism of pathogenesis in Alzheimer's disease

Lashuel, Hilal A.  
•
Hartley, Dean M.
•
Balakhaneh, David
Show more
2002
Journal of Biological Chemistry

The amyloid hypothesis suggests that the process of amyloid-beta protein (Abeta) fibrillogenesis is responsible for triggering a cascade of physiological events that contribute directly to the initiation and progression of Alzheimer's disease. Consequently, preventing this process might provide a viable therapeutic strategy for slowing and/or preventing the progression of this devastating disease. A promising strategy to achieve prevention of this disease is to discover compounds that inhibit Abeta polymerization and deposition. Herein, we describe a new class of small molecules that inhibit Abeta aggregation, which is based on the chemical structure of apomorphine. These molecules were found to interfere with Abeta1-40 fibrillization as determined by transmission electron microscopy, Thioflavin T fluorescence and velocity sedimentation analytical ultracentrifugation studies. Using electron microscopy, time-dependent studies demonstrate that apomorphine and its derivatives promote the oligomerization of Abeta but inhibit its fibrillization. Preliminary structural activity studies demonstrate that the 10,11-dihydroxy substitutions of the D-ring of apomorphine are required for the inhibitory effectiveness of these aporphines, and methylation of these hydroxyl groups reduces their inhibitory potency. The ability of these small molecules to inhibit Abeta amyloid fibril formation appears to be linked to their tendency to undergo rapid autoxidation, suggesting that autoxidation product(s) acts directly or indirectly on Abeta and inhibits its fibrillization. The inhibitory properties of the compounds presented suggest a new class of small molecules that could serve as a scaffold for the design of more efficient inhibitors of Abeta amyloidogenesis in vivo.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

42881.full.pdf

Access type

openaccess

Size

597.99 KB

Format

Adobe PDF

Checksum (MD5)

aee5bbcd4a085a430b0089da89ed4f85

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés