Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks
 
conference paper

Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks

Aziz, Adel  
•
Herzen, Julien  
•
Merz, Ruben  
Show more
2011
MobiCom '11: Proceedings of the 17th annual international conference on Mobile computing and networking
ACM Mobicom

The goal of jointly providing efficiency and fairness in wireless networks can be seen as the problem of maximizing a given utility function. In contrast with wired networks, the capacity of wireless networks is typically time-varying and not known explicitly. Hence, as the capacity region is impossible to know or measure exactly, existing scheduling schemes either under-estimate it and are too conservative, or they over-estimate it and suffer from congestion collapse. We propose a new adaptive algorithm, called Enhance & Explore (E&E). It maximizes the utility of the network without requiring any explicit characterization of the capacity region. E&E works above the MAC layer and it does not demand any modification to the existing networking stack. We first evaluate our algorithm theoretically and we prove that it converges to a state of optimal utility. We then evaluate the performance of the algorithm in a WLAN setting, using both simulations and real measurements on a testbed composed of IEEE 802.11 wireless routers. Finally, we investigate a wireless mesh network setting and we find that, when coupled with an efficient mechanism for congestion control, the E&E algorithm greatly increases the utility achieved by multi-hop networks as well.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

mobi21r-aziz.pdf

Access type

openaccess

Size

654.78 KB

Format

Adobe PDF

Checksum (MD5)

47e6afcea658d6637a586859a2953b06

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés