Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Electrons herald non-classical light
 
research article

Electrons herald non-classical light

Arend, Germaine
•
Huang, Guanhao  
•
Feist, Armin
Show more
October 16, 2025
Nature Physics

Free electrons are a universal source of electromagnetic fields, and fundamentally their quantized energy exchange may facilitate generating tunable quantum light. Because the quantum features of the emitted radiation are encoded in the joint electronic and photonic state, they can only be revealed by a measurement accessing both subsystems. Here we demonstrate the coherent parametric generation of such non-classical states of light by free electrons. Investigating electron–photon correlations, we show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide. In Hanbury Brown–Twiss measurements, we observe an electron-heralded single-photon state using antibunching intensity correlation, whereas two-quantum energy losses of individual electrons yield pronounced two-photon coincidences. Our results will enable the tailored preparation of higher-number Fock and other optical quantum states on the basis of controlled interactions with free-electron beams.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41567-025-03033-1.pdf

Type

Main Document

Version

Access type

openaccess

License Condition

CC BY

Size

2.22 MB

Format

Adobe PDF

Checksum (MD5)

48257ffac42c14bcfeb057fee297c0fd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés