Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Toward development of a biomimetic tensegrity footbridge
 
conference paper not in proceedings

Toward development of a biomimetic tensegrity footbridge

Veuve, Nicolas Willy  
•
Dalil Safaei, Seif  
•
Smith, Ian F. C.  
2014
6WCSCM: Sixth World Conference on Structural Control and Monitoring

Biomimetic structures interact with their environment, change their properties, learn and self-repair, thereby providing properties that are similar to living organisms. Interactions with the environment involve unique challenges in the field of computational control, algorithms, damage tolerance, and structural analysis. Tensegrity structures are pin-jointed structures of cables and struts in a self-stress state. Tensegrity structures are suitable for active control since the shape of the structure can be changed by changing the length of the elements. Consequently, they are good candidates for biomimetic structures. This paper describes research that is moving toward a case study of biomimetic behaviour of a deployable tensegrity footbridge. This footbridge is made of four modules. Each module is composed of pentagonal circuit-pattern including interconnected struts in a ring configuration that can be folded if cable lengths are changed. Various actuator combinations can be selected for deployment. This property is particularly interesting for biomimetic structures since a single shape change can be achieved many ways. Methodologies for deployment and folding of tensegrity footbridge via combinations of spring and cable clustered actuation are described. Analytical predictions are compared with test results of a near-full-scale tensegrity footbridge. Strategies for folding and deployment are different. A continuous cable and spring configuration is feasible for deployment of tensegrity footbridge. Since the deployment behaviour is non-linear and since deformed geometry as well as joint friction influences the deployment pattern, pre-defined control commands cannot provide the desired deployed position. Active deployment control is thus justified.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Veuve-et-al-wcscm14-Toward development of a biomimetic tensegrity footbridge.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

557.87 KB

Format

Adobe PDF

Checksum (MD5)

9244b5cd0945656189fac46085a5afb5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés