Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules
 
research article

Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules

John-Herpin, Aurelian  
•
Kavungal, Deepthy  
•
von Mucke, Lea
Show more
February 22, 2021
Advanced Materials

Insights into the fascinating molecular world of biological processes are crucial for understanding diseases, developing diagnostics, and effective therapeutics. These processes are complex as they involve interactions between four major classes of biomolecules, i.e., proteins, nucleic acids, carbohydrates, and lipids, which makes it important to be able to discriminate between all these different biomolecular species. In this work, a deep learning-augmented, chemically-specific nanoplasmonic technique that enables such a feat in a label-free manner to not disrupt native processes is presented. The method uses a highly sensitive multiresonant plasmonic metasurface in a microfluidic device, which enhances infrared absorption across a broadband mid-IR spectrum and in water, despite its strongly overlapping absorption bands. The real-time format of the optofluidic method enables the collection of a vast amount of spectrotemporal data, which allows the construction of a deep neural network to discriminate accurately between all major classes of biomolecules. The capabilities of the new method are demonstrated by monitoring of a multistep bioassay containing sucrose- and nucleotides-loaded liposomes interacting with a small, lipid membrane-perforating peptide. It is envisioned that the presented technology will impact the fields of biology, bioanalytics, and pharmacology from fundamental research and disease diagnostics to drug development.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Advanced Materials - 2021 - John‐Herpin.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.28 MB

Format

Adobe PDF

Checksum (MD5)

7a065a0c531ede526233cafb5ec6a101

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés