Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Cache-Assisted Scratchpad Memory for Multiple-Bit-Error Correction
 
research article

A Cache-Assisted Scratchpad Memory for Multiple-Bit-Error Correction

Farbeh, Hamed
•
Mirzadeh, Nooshin Sadat  
•
Ghalaty, Nahid Farhady
Show more
2016
IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Scratchpad memory (SPM) is widely used in modern embedded processors to overcome the limitations of cache memory. The high vulnerability of SPM to soft errors, however, limits its usage in safety-critical applications. This paper proposes an efficient fault-tolerant scheme, called cache-assisted duplicated SPM (CADS), to protect SPM against soft errors. The main aim of CADS is to utilize cache memory to provide a replica for SPM lines. Using cache memory, CADS is able to guarantee a full duplication of all SPM lines. We also further enhance the proposed scheme by presenting buffered CADS (BCADS) that significantly improves the CADS energy efficiency. BCADS is compared with two well-known duplication schemes as well as single-error correction scheme. The comparison results reveal that: 1) BCADS imposes a 13.6% less energy-delay product (EDP) overhead than the duplication schemes and it does not require to modify the SPM manager and target application and 2) in comparison with the conventional single-error correction double-error detection (SEC-DED) scheme, BCADS provides a significantly higher error correction capability by correcting up to 4-b burst errors using a low-cost 4-b interleaved parity code. Moreover, the area overhead for error correction and the performance overhead of BCADS are negligible (less than 1%), whereas the area and performance overheads are 21.9% and 6.1% for SEC-DED, respectively. Furthermore, BCADS imposes about a 10.7% lower EDP overhead compared with the SEC-DED scheme.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TVLSI.2016.2544811
Web of Science ID

WOS:000386979600008

Author(s)
Farbeh, Hamed
Mirzadeh, Nooshin Sadat  
Ghalaty, Nahid Farhady
Miremadi, Seyed-Ghassem
Fazeli, Mahdi
Asadi, Hossein
Date Issued

2016

Publisher

Ieee-Inst Electrical Electronics Engineers Inc

Published in
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Volume

24

Issue

11

Start page

3296

End page

3309

Subjects

Cache memory

•

multiple-bit upset

•

scratchpad memory (SPM)

•

soft error correction

•

data duplication

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
PARSA  
Available on Infoscience
January 24, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/133714
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés