Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Removing Facial Features From Structural Mri Images Biases Visual Quality Assessment
 
research article

Removing Facial Features From Structural Mri Images Biases Visual Quality Assessment

Provins, Céline
•
Savary, Élodie
•
Sanchez, Thomas  
Show more
April 1, 2025
PLOS Biology

A critical step before data-sharing of human neuroimaging is removing facial features to protect individuals' privacy. However, not only does this process redact identifiable information about individuals, but it also removes non-identifiable information. This introduces undesired variability into downstream analysis and interpretation. This registered report investigated the degree to which the so-called defacing altered the quality assessment of T1-weighted images of the human brain from the openly available "IXI dataset". The effect of defacing on manual quality assessment was investigated on a single-site subset of the dataset (N = 185). By comparing two linear mixed-effects models, we determined that four trained human raters' perception of quality was significantly influenced by defacing by modeling their ratings on the same set of images in two conditions: "nondefaced" (i.e., preserving facial features) and "defaced". In addition, we investigated these biases on automated quality assessments by applying repeated-measures, multivariate ANOVA (rm-MANOVA) on the image quality metrics extracted with MRIQC on the full IXI dataset (N = 581; three acquisition sites). This study found that defacing altered the quality assessments by humans and showed that MRIQC's quality metrics were mostly insensitive to defacing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

journal.pbio.3003149.pdf

Type

Main Document

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

1.4 MB

Format

Adobe PDF

Checksum (MD5)

52d6157b135bcb30986daa28d28505c4

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés