Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Amyloid Single Cell Cytotoxicity Assays by Nanomotion Detection
 
research article

Amyloid Single Cell Cytotoxicity Assays by Nanomotion Detection

Ruggeri, Francesco  
•
Mahul, Anne-Laure  
•
Kasas, Sandor  
Show more
2017
Cell Death Discovery

Cells are extremely complex systems able to modify actively their metabolism and behaviour in response to environmental conditions and stimuli, such as pathogenic agents or drugs. The comprehension of these responses is central to understand the molecular bases of human pathologies, including amyloid misfolding diseases. Conventional bulk biological assays are limited by intrinsic cellular heterogeneity in gene, protein and metabolite expression and can investigate only indirectly cellular reactions in non-physiological conditions. Here, we employ a label-free nanomotion sensor to study single neuroblastoma cells exposed to extracellular monomeric and amyloid α-synuclein species in real-time and in physiological conditions. Combining this technique with fluorescence microscopy, we demonstrate multispecies cooperative cytotoxic effect of amyloids and aggregate-induced loss of cellular membrane integrity. Notably, the method can study cellular reactions and cytotoxicity an order of magnitude faster and using 100-fold smaller volume of reagents when compared to conventional bulk analyses. This rapidity and sensitivity will allow testing novel pharmacological approaches to stop or delay a wide range of human diseases.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

cddiscovery201753.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.23 MB

Format

Adobe PDF

Checksum (MD5)

3714b5f6f7fd1b3f6e5e5ee05bf94871

Loading...
Thumbnail Image
Name

articles-cddiscovery201753.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.23 MB

Format

Adobe PDF

Checksum (MD5)

3714b5f6f7fd1b3f6e5e5ee05bf94871

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés