Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dynamic Nuclear Polarization Enhanced NMR Spectroscopy for Pharmaceutical Formulations
 
research article

Dynamic Nuclear Polarization Enhanced NMR Spectroscopy for Pharmaceutical Formulations

Rossini, Aaron J.  
•
Widdifield, Cory M.
•
Zagdoun, Alexandre
Show more
2014
Journal of the American Chemical Society

Dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy at 9.4 T is demonstrated for the detailed atomic-level characterization of commercial pharmaceutical formulations. To enable DNP experiments without major modifications of the formulations, the gently ground tablets are impregnated with solutions of biradical polarizing agents. The organic liquid used for impregnation (here 1,1,2,2-tetrachloroethane) is chosen so that the active pharmaceutical ingredient (API) is minimally perturbed. DNP enhancements (epsilon) of between 40 and 90 at 105 K were obtained for the microparticulate API within four different commercial formulations of the over-the-counter antihistamine drug cetirizine dihydrochloride. The different formulations contain between 4.8 and 8.7 wt % API. DNP enables the rapid acquisition with natural isotopic abundances of one- and two-dimensional C-13 and N-15 solid-state NMR spectra of the formulations while preserving the microstructure of the API particles. Here this allowed immediate identification of the amorphous form of the API in the tablet. API-excipient interactions were observed in high-sensitivity H-1-N-15 correlation spectra, revealing direct contacts between povidone and the API. The API domain sizes within the formulations were determined by measuring the variation of e as a function of the polarization time and numerically modeling nuclear spin diffusion. Here we measure an API particle radius of 0.3 mu m with a single particle model, while modeling with a Weibull distribution of particle sizes suggests most particles possess radii of around 0.07 mu m.

  • Details
  • Metrics
Type
research article
DOI
10.1021/ja4092038
Web of Science ID

WOS:000331343300030

Author(s)
Rossini, Aaron J.  
Widdifield, Cory M.
Zagdoun, Alexandre
Lelli, Moreno
Schwarzwaelder, Martin
Coperet, Christophe
Lesage, Anne
Emsley, Lyndon  
Date Issued

2014

Publisher

AMER CHEMICAL SOC

Published in
Journal of the American Chemical Society
Volume

136

Issue

6

Start page

2324

End page

2334

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LRM  
Available on Infoscience
January 8, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/109952
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés