Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. The Conditional Regret-Capacity Theorem for Batch Universal Prediction
 
conference paper

The Conditional Regret-Capacity Theorem for Batch Universal Prediction

Bondaschi, Marco  
•
Gastpar, Michael  
September 29, 2025
2025 IEEE Information Theory Workshop (ITW)
2025 IEEE Information Theory Workshop (ITW)

We derive a conditional version of the classical regret-capacity theorem. This result can be used in universal prediction to find lower bounds on the minimal batch regret, which is a recently introduced generalization of the average regret, when batches of training data are available to the predictor. As an example, we apply this result to the class of binary memoryless sources. Finally, we generalize the theorem to Rényi information measures, revealing a deep connection between the conditional Rényi divergence and the conditional Sibson’s mutual information.

  • Details
  • Metrics
Type
conference paper
DOI
10.1109/itw62417.2025.11240547
Author(s)
Bondaschi, Marco  

École Polytechnique Fédérale de Lausanne

Gastpar, Michael  

École Polytechnique Fédérale de Lausanne

Date Issued

2025-09-29

Publisher

IEEE

Published in
2025 IEEE Information Theory Workshop (ITW)
DOI of the book
https://doi.org/10.1109/ITW62417.2025
ISBN of the book

979-8-3315-3142-3

Start page

746

End page

751

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LINX  
Event nameEvent acronymEvent placeEvent date
2025 IEEE Information Theory Workshop (ITW)

ITW 2025

Sydney, Australia

2025-09-29 - 2025-10-03

FunderFunding(s)Grant NumberGrant URL

National Science Foundation

Available on Infoscience
November 24, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/256254
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés