Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Stability of extended beam-to-girder shear tab connections under gravity induced shear force
 
conference paper

Stability of extended beam-to-girder shear tab connections under gravity induced shear force

Motallebi, Mohammad
•
Lignos, Dimitrios  
•
Rogers, Colin
2017
Proceedings of the Annual Stability Conference Structural Stability Research Council (SSRC)
Annual Stability Conference Structural Stability Research Council

Extended shear tab connections are widely used to connect beams to the webs of girders. In the full-depth configuration of extended beam-to-girder shear tabs, the shear plate is typically fillet welded to the web, as well as to the top and bottom flanges of the girder. Due to the extended nature of the shear tab, i.e. the connection to the beam is actually made well outside of the cross-section of the girder, the inelastic stability of this plate must be accounted for in design. A coordinated experimental and numerical investigation of the behaviour and stability requirements of full-depth extended shear tabs is described in the paper. The findings from a detailed finite element (FE) simulation of 3 single-sided beam-to-girder shear tab connections, tested at McGill University, are discussed. Based on the FE analyses, the load transfer mechanism and the buckling capacity of the stiffened portion of the full-depth shear tab were determined. The parameters, which influenced the buckling of the stiffener, were studied; including the depth and thickness of the shear plate, the depth of the girder, the width of the girder flanges, and the flexibility of the girder web. Further FE analyses were completed to determine the buckling capacity of the shear tab with reduced depth of the stiffener. In addition, the load-transfer mechanism and buckling capacity of these shear plates were modeled when they are used in double-sided configurations, i.e. when a beam is placed on both sides of the girder.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Motallebi_et_al_SSRC_2017.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

1.19 MB

Format

Adobe PDF

Checksum (MD5)

b9e51b5e1af81c1bf3da4e00ca88ad4a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés