Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Distributionally Robust Optimization
 
review article

Distributionally Robust Optimization

Kuhn, Daniel  
•
Shafiee, Soroosh
•
Wiesemann, Wolfram  
July 1, 2025
Acta Numerica

Distributionally robust optimization (DRO) studies decision problems under uncertainty where the probability distribution governing the uncertain problem parameters is itself uncertain. A key component of any DRO model is its ambiguity set, that is, a family of probability distributions consistent with any available structural or statistical information. DRO seeks decisions that perform best under the worst distribution in the ambiguity set. This worst case criterion is supported by findings in psychology and neuroscience, which indicate that many decision-makers have a low tolerance for distributional ambiguity. DRO is rooted in statistics, operations research and control theory, and recent research has uncovered its deep connections to regularization techniques and adversarial training in machine learning. This survey presents the key findings of the field in a unified and self-contained manner.

  • Files
  • Details
  • Versions
  • Metrics
Loading...
Thumbnail Image
Name

distributionally-robust-optimization.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY

Size

2.28 MB

Format

Adobe PDF

Checksum (MD5)

2071639b64dd5b0220333ddb705c6008

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés