Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Renormalization and blow up for wave maps from $S^2 \times \mathbb{R}$ to $S^2$
 
research article

Renormalization and blow up for wave maps from $S^2 \times \mathbb{R}$ to $S^2$

Shahshahani, Sohrab Mirshams  
2016
Transactions Of The American Mathematical Society

We construct a one parameter family of nite time blow ups to the co-rotational wave maps problem from $S^2\times R$ to $S^2$ parameterized by $\nu \epsilon (\frac{1}{2},1]$. The longitudinal function $u(t,\alpha)$ which is the main object of study will be obtained as a perturbation of a rescaled harmonic map of rotation index one from $\mathbb{R}^2$ to $S^2$. The domain of this harmonic map is identied with a neighborhood of the north pole in the domain $S^2$ via the exponential coordinates $(\alpha ,\theta)$. In these coordinates $u(t,\alpha) = Q(\lambda(t)\alpha) + R(t,\alpha)$, where $Q(r) = 2,arctan,r$ is the standard co-rotational harmonic map to the sphere, $\lambda (t) = t^{-1-\nu}$, and $R(t,\alpha)$ is the error with local energy going to zero as t ! 0: Blow up will occur at $(t,\alpha) = (0,0)$ due to energy concentration, and up to this point the solution will have regularity $H^{1+\nu-}$.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Blow Up-modified.pdf

Access type

openaccess

Size

425.09 KB

Format

Adobe PDF

Checksum (MD5)

1bfc018901a795228eac917419621c53

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés