Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. New Measurement Method in Drug Sensing by Direct Total-Charge Detection in Voltammetry
 
conference paper

New Measurement Method in Drug Sensing by Direct Total-Charge Detection in Voltammetry

Aiassa, Simone
•
Gonzalez Martinez, Jose David
•
Demarchi, Danilo
Show more
June 1, 2020
2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA)

Electrochemical biosensors are promoting point-of-care and wearable instrumentation due to their high versatility in measuring human metabolites. There is a considerable number of biological compounds that can be detected and measured through voltammetry based techniques. Voltmmetry some times requires peak identification and quantification that are non-trivial to be efficiently implemented by automatic instrumentation. To overcome the complexity of automatic peak estimation, we propose here an instrumentation circuit for edge-computing in pharmacology relying on an entirely novel measurement method via TotalCharge Detection in Cyclic voltammetry (TCDC). Namely, our TCDC method innovatively applies the coulometry measurement to the well-established voltammetry procedure. The proposed instrumentation accumulates the total charge exchanged in the faradaic process, exploiting a Nagaraj integrator as charge suppressor to fit the application-specific constraints. The work shows accurate simulations of the TCDC circuit on a set of experimental measures, acquired on paracetamol as benchmark drug. The proposed measurement technique and the developed circuit are compared to the peak detection method usually adopted in literature. The results demonstrate that the proposed system is a perfect trade-off between the doubled limit-of-detection and a tenfold reduction in measurement errors. At the same time, we eliminate any need for data oversampling and processing, promoting the TCDC as an efficient new measurement method for point-of-care and wearable monitoring of biological compounds.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

NewMeasurementMethod_Aiassa_2020.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

License Condition

CC BY

Size

214.59 KB

Format

Adobe PDF

Checksum (MD5)

1bcf91d59ba2573dddc6a4490899f014

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés