Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Observation of topological gravity-capillary waves in a water wave crystal
 
research article

Observation of topological gravity-capillary waves in a water wave crystal

Laforge, Nicolas
•
Laude, Vincent
•
Chollet, Franck
Show more
August 19, 2019
New Journal of Physics

The discovery of topological phases of matter, initially driven by theoretical advances in quantum condensed matter physics, has been recently extended to classical wave systems, reaching out to a wealth of novel potential applications in signal manipulation and energy concentration. Despite the fact that wave propagation in many realistic media (metals at optical frequencies, polymers at ultrasonic frequencies) is inherently dispersive, topological wave transport in photonic and phononic crystals has so far been limited to ideal situations and proof-of-concept experiments involving dispersionless media. Here, we report the first experimental demonstration of topological edge states in a classical water wave system supporting highly dispersive wave propagation, in the intermediate regime of gravity-capillary waves. We use a stochastic method to rigorously take into account the inherent dispersion and devise a water wave crystal insulator supporting valley-selective transport at topological domain walls. Our measurements, performed with a high-speed camera under stroboscopic illumination, unambiguously demonstrate the possibility of valley-locked transport of water waves.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Laforge_2019_New_J._Phys._21_083031.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.08 MB

Format

Adobe PDF

Checksum (MD5)

e8deb72e3ef00add95049be1713359a8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés